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Chapter 1

Introduction

The HAPprime package is a GAP package which supplements the HAP package
(http://hamilton.nuigalway.ie/Hap/www/), providing new and improved functions for
doing homological algebra over small prime-power groups. A detailed overview of the HAP-
prime package, with examples and documentation of the high-level functions, is provided in the
accompanying HAPprime user guide.

This document, the datatypes reference manual, supplements the HAPprime user guide. It de-
scribes the new GAP datatypes defined by the HAPprime package, and all of the associated functions
for working with each of these datatypes. The datatypes are

HAPResolution
(Chapter 2) this datatype, defined in the HAP package, represents a free FG-resolution of a
FG-module. HAPprime extends the definition of this datatype to save memory, and provides
additional functions to operate on resolutions.

FpGModuleGF
(Chapter 3) a free FG-module compactly represented in terms of generating elements, with
operations that do as much manipulation as possible within this form, thus minimizing memory
use.

FpGModuleHomomorphismGF
(Chapter 4) a free linear homomorphism between two FG-modules, each represented as a
FpGModuleGF. this also uses the compact generator form to save memory in its operations.

In addition, Chapter 5 provides documentation for some general functions defined in HAPprime which
extend some of the basic GAP functionality in areas such as matrices and polynomials.

Each chapter of this reference manual begins with an overview of the datatype, and then imple-
mentation details of any interesting functions. The function reference of related functions then fol-
lows, subdivided into sections of related functions. Examples demonstrating the use of each function
are given at the end of each section.

Earlier versions of this datatypes reference manual also documented the datatypes
GradedAlgebraPresentation, HAPRingHomomorphism and HAPDerivation. The definitions of
these datatypes and their related functions are now part of HAP and will be documented as part of
that package.

7
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1.1 Internal function reference

This version of the datatypes reference manual has been specially built to also provide documentation
for all of the internal functions of HAPprime. (This can be done using the optional argument to
MakeHAPprimeDoc (HAPprime: MakeHAPprimeDoc).) The documentation for these functions is
found in Chapter 6.



Chapter 2

Resolutions

A free FG-resolution of an FG-module M is a sequence of module homomorphisms

. . .→Mn+1→Mn→Mn−1→ . . .→M1→M0�M

Where each Mn is a free FG-module and the image of dn+1 : Mn+1 → Mn equals the kernel of dn :
Mn→Mn−1 for all n > 0.

2.1 The HAPResolution datatype in HAPprime

Both HAP and HAPprime use the HAPResolution datatype to store resolutions, and you should refer
to the HAP documentation for full details of this datatype. With resolutions computed by HAP, the
boundary maps which define the module homomorphisms are stored as lists of ZG-module words,
each of which is an integer pair [i,g]. By contrast, when HAPprime computes resolutions it stores the
boundary maps as lists of G-generating vectors (as used in FpGModuleHomomorphismGF, see Chapter
4). Over small finite fields (and in particular in GF(2)), these compressed vectors take far less memory,
saving at least a factor of two for long resolutions. The different data storage method is entirely an
internal change - as far as the used is concerned, both versions behave exactly the same.

2.2 Implementation: Constructing resolutions

Given the definition of a free FG-resolution given above, a resolution of a module M can be calculated
by construction. If there are k generators for M, we can set M0 equal to the free FG-module (FG)k,
and the module homomorphism d0 : M0 → M to be the one that sends the ith standard generator of
(FG)k to the ith element of M. We can now recursively construct the other modules and module
homomorphisms in a similar manner. Given a boundary homomorphism dn = Mn→Mn−1, the kernel
of this can be calculated. Then given a set of generators (ideally a small set) for ker(dn), we can set
Mn+1 = (FG)|ker(dn)|, and the new module homomorphism dn+1 to be the one mapping the standard
generators of Mn+1 onto the generators of ker(dn).

HAPprime implements the construction of resolutions using this method. The construc-
tion is divided into two stages. The creation of the first homomorphism in the resolution
for M is performed by the function LengthZeroResolutionPrimePowerGroup (2.3.2), or
for a resolution of the trivial FG-module F, the first two homomorphisms can be stated
without calculation using LengthOneResolutionPrimePowerGroup (2.3.1). Once this ini-
tial sequence is created, a longer resolution can be created by repeated application of one

9
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of ExtendResolutionPrimePowerGroupGF (HAPprime: ExtendResolutionPrimePower-
GroupGF), ExtendResolutionPrimePowerGroupRadical (HAPprime: ExtendResolu-
tionPrimePowerGroupRadical) or ExtendResolutionPrimePowerGroupGF2 (HAPprime:
ExtendResolutionPrimePowerGroupGF2), each of which extends the resolution by one
stage by constructing a new module and homomorphism mapping onto the minimal genera-
tors of the kernel of the last homomorphism of the input resolution. These extension func-
tions differ in speed and the amount of memory that they use. The lowest-memory version,
ExtendResolutionPrimePowerGroupGF (HAPprime: ExtendResolutionPrimePowerGroupGF),
uses the block structure of module generating vectors (see Section 3.2.1) and calculates ker-
nels of the boundary homomorphisms using KernelOfModuleHomomorphismSplit (4.6.3)
and finds a minimal set of generators for this kernel using MinimalGeneratorsModuleGF
(3.5.9). The much faster but memory-hungry ExtendResolutionPrimePowerGroupRadical
(HAPprime: ExtendResolutionPrimePowerGroupRadical) uses KernelOfModuleHomomorphism
(4.6.3) and MinimalGeneratorsModuleRadical (3.5.9) respectively.
ExtendResolutionPrimePowerGroupGF2 (HAPprime: ExtendResolutionPrimePower-
GroupGF2) uses KernelOfModuleHomomorphismGF (4.6.3) whic partitions the boundary ho-
momorphism matrix using FG-reduction. This gives a small memory saving over the Radical
method, but can take as long as the GF scheme.

The construction of resolutions of length n is wrapped up in the func-
tions ResolutionPrimePowerGroupGF, ResolutionPrimePowerGroupRadical and
ResolutionPrimePowerGroupAutoMem, which (as well as the extension functions) are fully
documented in Section (HAPprime: ResolutionPrimePowerGroup) of the HAPprime user manual.

2.3 Resolution construction functions

2.3.1 LengthOneResolutionPrimePowerGroup

♦ LengthOneResolutionPrimePowerGroup(G) (function)

Returns: HAPResolution
Returns a free FG-resolution of length 1 for group G (which must be of a prime power), i.e. the

resolution
FGk1 → FG� F

This function requires very little calculation: the first stage of the resolution can simply be stated
given a set of minimal generators for the group.

2.3.2 LengthZeroResolutionPrimePowerGroup

♦ LengthZeroResolutionPrimePowerGroup(M) (function)

Returns: HAPResolution
Returns a minimal free FG-resolution of length 0 for the FpGModuleGF module M , i.e. the resolu-

tion
FGk0 �M

This function requires little calculation since the the first stage of the resolution can simply be
stated if the module has minimal generators: each standard generator of the zeroth-degree module
M0 maps onto a generator of M . If M does not have minimal generators, they are calculated using
MinimalGeneratorsModuleRadical (3.5.9).
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2.4 Resolution data access functions

2.4.1 ResolutionLength

♦ ResolutionLength(R) (method)

Returns: Integer
Returns the length (i.e. the maximum index k) in the resolution R.

2.4.2 ResolutionGroup

♦ ResolutionGroup(R) (method)

Returns: Group
Returns the group of the resolution R.

2.4.3 ResolutionFpGModuleGF

♦ ResolutionFpGModuleGF(R, k) (method)

Returns: FpGModuleGF
Returns the module Mk in the resolution R, as a FpGModuleGF (see Chapter 3), assuming the

canonical action.

2.4.4 ResolutionModuleRank

♦ ResolutionModuleRank(R, k) (method)

Returns: Integer
Returns the FG rank of the kth module Mk in the resolution.

2.4.5 ResolutionModuleRanks

♦ ResolutionModuleRanks(R) (method)

Returns: List of integers
Returns a list containg the FG rank of the each of the modules Mk in the resolution R.

2.4.6 BoundaryFpGModuleHomomorphismGF

♦ BoundaryFpGModuleHomomorphismGF(R, k) (method)

Returns: FpGModuleHomomorphismGF
Returns the kth boundary map in the resolution R, as a FpGModuleHomomorphismGF. This repre-

sents the linear homomorphism dk : Mk→Mk−1.

2.4.7 ResolutionsAreEqual

♦ ResolutionsAreEqual(R, S) (operation)

Returns: Boolean
Returns true if the resolutions appear to be equal, false otherwise. This compares the torsion

coefficients of the homology from the two resolutions.
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2.5 Example: Computing and working with resolutions

In this example we construct a minimal free FG-resolution of length four for the group G = D8×Q8
of order 64, which will be the sequence

(FG)22→ (FG)15→ (FG)9→ (FG)� F

We first build each stage explicitly, starting with LengthOneResolutionPrimePowerGroup
(2.3.1) followed by repeated applications of ExtendResolutionPrimePowerGroupRadical
(HAPprime: ExtendResolutionPrimePowerGroupRadical). We extract various prop-
erties of this resolution. Finally, we construct equivalent resolutions for G using
ResolutionPrimePowerGroupGF (HAPprime: ResolutionPrimePowerGroupGF (for group))
and ResolutionPrimePowerGroupGF2 (HAPprime: ResolutionPrimePowerGroupGF2 (for
group)) and check that the three are equivalent.

Example
gap> G := DirectProduct(DihedralGroup(8), SmallGroup(8, 4));
<pc group of size 64 with 6 generators>
gap> R := LengthOneResolutionPrimePowerGroup(G);
Resolution of length 1 in characteristic 2 for <pc group of size 64 with
6 generators> .
No contracting homotopy available.
A partial contracting homotopy is available.

gap> R := ExtendResolutionPrimePowerGroupRadical(R);;
gap> R := ExtendResolutionPrimePowerGroupRadical(R);;
gap> R := ExtendResolutionPrimePowerGroupRadical(R);
Resolution of length 4 in characteristic 2 for <pc group of size 64 with
6 generators> .
No contracting homotopy available.
A partial contracting homotopy is available.

gap> #
gap> ResolutionLength(R);
4
gap> ResolutionGroup(R);
<pc group of size 64 with 6 generators>
gap> ResolutionModuleRanks(R);
[ 4, 9, 15, 22 ]
gap> ResolutionModuleRank(R, 3);
15
gap> M2 := ResolutionFpGModuleGF(R, 2);
Full canonical module FGˆ9 over the group ring of <pc group of size 64 with
6 generators> in characteristic 2

gap> d3 := BoundaryFpGModuleHomomorphismGF(R, 3);
<Module homomorphism>

gap> ImageOfModuleHomomorphism(d3);
Module over the group ring of <pc group of size 64 with
6 generators> in characteristic 2 with 15 generators in FGˆ9.

gap> #
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gap> S := ResolutionPrimePowerGroupGF(G, 4);
Resolution of length 4 in characteristic 2 for <pc group of size 64 with
6 generators> .
No contracting homotopy available.
A partial contracting homotopy is available.

gap> ResolutionsAreEqual(R, S);
true
gap> T := ResolutionPrimePowerGroupGF2(G, 4);
Resolution of length 4 in characteristic 2 for <pc group of size 64 with
6 generators> .
No contracting homotopy available.
A partial contracting homotopy is available.

gap> ResolutionsAreEqual(R, T);
true

Further example of constructing resolutions and extracting data from them are given in Sections
3.4.11, 3.5.11, 3.6.3, 4.5.7 and 4.6.4 in this reference manual, and also the chapter of (HAPprime:
Examples) in the HAPprime user guide.

2.6 Miscellaneous resolution functions

2.6.1 BestCentralSubgroupForResolutionFiniteExtension

♦ BestCentralSubgroupForResolutionFiniteExtension(G[, n]) (operation)

Returns: Group
Returns the central subgroup of G that is likely to give the smallest module ranks when using the

HAP function ResolutionFiniteExtension (HAP: ResolutionFiniteExtension). That function
computes a non-minimal resolution for G from the twisted tensor product of resolutions for a normal
subgroup N CG and the quotient group G/N. The ranks of the modules in the resolution for G are the
products of the module ranks of the resolutions for these smaller groups. This function tests n terms
of the minimal resolutions for all the central subgroups of G and the corresponding quotients to find
the subgroup/quotient pair with the smallest module ranks. If n is not provided, then n = 5 is used.



Chapter 3

FG-modules

Let FG be the group ring of the group G over the field F. In this package we only consider the case
where G is a finite p-groups and F= Fp is the field of p elements. In addition, we only consider free
FG-modules.

3.1 The FpGModuleGF datatype

Modules and submodules of free FG-modules are represented in HAPprime using the FpGModuleGF
datatype, where the ‘GF’ stands for ‘Generator Form’. This defines a module using a group G and a set
of G-generating vectors for the module’s vector space, together with a group action which operates
on those vectors. A free FG-module FG can be considered as a vector space F|G| whose basis is
the elements of G. An element of (FG)n is the direct sum of n copies of FG and, as an element of
FpGModuleGF, is represented as a vector of length n|G| with coefficients in F. Representing our FG-
module elements as vectors is ideal for our purposes since GAP’s representation and manipulation of
vectors and matrices over small prime fields is very efficient in both memory and computation time.

The HAP package defines a FpGModule object, which is similar but stores a vector space basis
rather than a G-generating set for the module’s vector space. Storing a G-generating set saves memory,
both in passive storage and in allowing more efficient versions of some computation algorithms.

There are a number of construction functions for FpGModuleGFs: see 3.3.1 for details. A FG-
module is defined by the following:

• gens, a list of G-generating vectors for the underlying vector space. These do not need to be
minimal - they could even be a vector space basis. The MinimalGeneratorsModule functions
(3.5.9) can be used to convert a module to one with a minimal set of generators.

• group, the group G for the module

• action, a function action(g, u) that represents the module’s group action on vectors. It
takes a group element g ∈ G and a vector u of length actionBlockSize and returns another
vector v of the same length that is the product v = gu. If action is not provided, the canonical
group permutation action is used. If the vector u is an integer multiple of actionBlockSize in
length, the function action acts block-wise on the vector.

• actionBlockSize, the length of vectors upon which action operates. This is usually the
order of the group, |G| (for example for the canonical action), but it is possible to specify this to

14
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support other possible group actions that might act on larger vectors. actionBlockSize will
always be equal to the ambient dimension of the module FG1.

The group, action and block size are internally wrapped up into a record groupAndAction, with
entries group, action and actionBlockSize. This is used to simplify the passing of parameters to
some functions.

Some additional information is sometimes needed to construct particular classes of FpGModuleGF:

• ambientDimension, the length of vectors in the generating set: for a module (FG)n, this is
equal to n×actionBlockSize. This is needed in the case when the list of generating vectors is
empty.

• form, a string detailing whether the generators are known to be minimal or not, and if so
in which format. It can be one of "unknown", "fullcanonical", "minimal", "echelon"
or "semiechelon". Some algorithms require a particular form, and algorithms such as
EchelonModuleGenerators (3.6.1) that manipulate a module’s generators to create these
forms set this entry.

3.2 Implementation details: Block echelon form

3.2.1 Generating vectors and their block structure

Consider the vector representation of an element in the FG-module (FG)2, where G is a group of
order four:

v ∈ (FG)2 = (g1 +g3,g1 +g2 +g4) = [1010|1101]

The first block of four entries in the vector correspond to the first FG summand and the second block
to the second summand (and the group elements are numbered in the order provided by the GAP
function Elements (Reference: Elements)).

Given a G-generating set for a FG-module, the usual group action permutes the group elements,
and thus the effect on the vector is to permute the equivalent vector elements. Each summand is inde-
pendent, and so elements are permuted within the blocks (normally of size |G|) seen in the example
above. A consequence of this is that if any block (i.e. summand) in a generator is entirely zero, then
it remains zero under group (or F) multiplication and so that generator contributes nothing to that part
of the vector space. This fact enables some of the structure of the module’s vector space to be inferred
from the G-generators, without needing a full vector space basis . A desirable set of G-generators is
one that has many zero blocks, and what we call the ‘block echelon’ form is one that has this property.

3.2.2 Matrix echelon reduction and head elements

The block echelon form of a FG-module generating set is analagous to the echelon form of matrices,
used as a first stage in many matrix algorithms, and we first briefly review matrix echelon form. In a
(row) echelon-form matrix, the head element in each row (the first non-zero entry) is the identity, and
is to the right of the head in the previous row. A consequence of this is that the values below each
head are all zero. All zero rows are at the bottom of the matrix (or are removed). GAP also defines a
semi-echelon form, in which it is guaranteed that all values below each head is zero, but not that each
head is to the right of those above it.

Matrices can be converted into (semi-)echelon form by using Gaussian elimination to perform
row reduction (for example the GAP function SemiEchelonMat (Reference: SemiEchelonMat)). A
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typical algorithm gradually builds up a list of matrix rows with unique heads, which will eventually
be an echelon-form set of basis elements for the row space of the matrix. This set is initialised with
the first row of the matrix, and the algorithm is then applied to each subsequent row in turn. The
basis rows in the current set are used to reduce the next row of the matrix: if, after reduction, it is
non-zero then it will have a unique head and is added to the list of basis rows; if it is zero then it may
be removed. The final set of vectors will be a semi-echelon basis for the row space of the original
matrix, which can then be permuted to give an echelon basis if required.

3.2.3 Echelon block structure and minimal generators

In the same way that the echelon form is useful for vector space generators, we can convert a set
of FG-module generators into echelon form. However, unlike multiplication by a field element, the
group action on generating vectors also permutes the vector elements, so a strict echelon form is less
useful. Instead, we define a ‘block echelon’ form, treating the blocks in the vector (see example above)
as the FG-elements to be converted into echelon form. In block-echelon form, the first non-zero block
in each row is as far to the right as possible. Often, the first non-zero block in a row will be to the right
of the first non-zero block in the row above, but when several generating vectors are needed in a block,
this may not be the case. The following example creates a random submodule of (FG)n by picking five
generating vectors at random. This module is first displayed with the original generators, and then they
are converted to block echelon form using the the HAPprime function EchelonModuleGenerators
(3.6.1). The two generating sets both span the same vector space (i.e. the same FG module), but the
latter representation is much more useful.

Example
gap> M := FpGModuleGF(RandomMat(5, 32, GF(2)), DihedralGroup(8));;
gap> Display(M);
Module over the group ring of Group( [ f1, f2, f3 ] )
in characteristic 2 with 5 generators in FGˆ4.

[.1..1.1.|.1....1.|1111.11.|11.1111.]
[11.1..1.|1....11.|1...111.|1...11..]
[11..1.1.|1.1.1...|11...1..|.11.11..]
[11111111|111...1.|.11...1.|.1..1111]
[.1111111|1.1.111.|..1..1..|1.111...]
gap> echM := EchelonModuleGenerators(M);
rec( module := Module over the group ring of <pc group of size 8 with

3 generators> in characteristic 2 with 4 generators in FGˆ
4. Generators are in minimal echelon form., headblocks := [ 1, 2, 3, 4 ] )

gap> Display(echM.module);
Module over the group ring of Group( [ f1, f2, f3 ] )
in characteristic 2 with 4 generators in FGˆ4.

[.1..1.1.|.1....1.|1111.11.|11.1111.]
[........|.1111..1|111.1...|.11.11.1]
[........|........|.1..1.1.|.1.1.111]
[........|........|........|..1111.1]
Generators are in minimal echelon form.gap>
gap> M = echM.module;
true

The main algorithm for converting a set of generators into echelon form is
SemiEchelonModuleGeneratorsDestructive (3.6.1). The generators for the FG module are
represented as rows of a matrix, and (with the canonical action) the first |G| columns of this matrix
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correspond to the first block, the next |G| columns to the second block, and so on. The first block
of the matrix is taken and the vector space Vb spanned by the rows of that block is found (which
will be a a subspace of F|G|). Taking the rows in the first block, find (by gradually leaving out
rows) a minimal subset that generates Vb. The rows of the full matrix that correspond to this
minimal subset form the first rows of the block-echelon form generators. Taking those rows, and
all G-multiples of them, now calculate a semi-echelon basis for the vector space that they generate
(using SemiEchelonMatDestructive (Reference: SemiEchelonMatDestructive)). This is used to
reduce all of the other generators. Since the rows we have chosen span the space of the first block,
the first block in all the other rows will be reduced to zero. We can now move on to the second block.

We now look at the rows of the matrix that start (have their first non-zero entry) in the second
block. In addition, some of the generators used for the first block might additionally give rise to
vector space basis vectors with head elements in the second blocks. The rows need to be stored during
the first stage and reused here. We find a minimal set of the matrix rows with second-block heads
that, when taken with any second-block heads from the first stage, generate the entire space spanned
by the second block. The vector-space basis from this new minimal set is then used to reduce the rest
of the generating rows as before, reducing all of the other rows’ second blocks to zero. The process
is then repeated for each other block. Any generators that are completely zero are then removed. The
algorithm is summarised in the following pseudocode:

Let X be the list of generators still to convert (initially all the generators)
Let Xe = [] be the list of generators already in block-echelon form
Define X{b} to represent the $b$th block from generators X
Define V(X) to represent the vector space generated by generators X
-------------------------------------------------------------------------------
for b in [1..blocks]
1. Find a minimal set of generators Xm from X such that

V(Xm{b} + Xe{b}) = V(X{b} + Xe{b})
2. Remove Xm from X and add them to Xe
3. Find a semi-echelon basis for V(Xe) and use this to reduce the elements

of block b in remaining vectors of X to zero
end for

The result of this algorithm is a new generating set for the module that is minimal in the sense that
no vector can be removed from the set and leave it still spanning the same vector space. In the case
of a FG-module with F=GF(2), this is a globally minimal set: there is no possible alternative set with
fewer generators.

3.2.4 Intersection of two modules

Knowing the block structure of the modules enables the intersection of two modules to be calculated
more efficiently. Consider two modules U and V with the block structure as given in this example:

Example
gap> DisplayBlocks(U);
[*..]
[**.]
[.*.]
gap> DisplayBlocks(V);
[.**]
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[.**]
[..*]

To calculate the intersection of the two modules, it is normal to expand out the two modules to find the
vector space UF and VF of the two modules and calculate the intersection as a standard vector-space
intersection. However, in this case, since U has no elements in the last block, and V has no elements
in the first block, the intersection must only have elements in the middle block. This means that the
first generator of U and the last generator of V can not be in the intersection and can be ignored for
the purposes of the intersection calculation. In general, rather than expanding the entirety of U and V
into an F-basis to calculate their intersection, one can expand U and V more intelligently into F-bases
U ′F and V ′F which are smaller than UF and VF but have the same intersection.

Having determined (by comparing the block structure of U and V ) that only the middle block in
our example contributes to the intersection, we only need to expand out the rows of U and V that
have heads in that block. The first generator of U generates no elements in the middle block, and
trivially be ignored. The second row of U may or may not contribute to the intersection: this will need
expanding out and echelon reduced. The expanded rows that don’t have heads in the central block can
then be discarded, with the other rows forming part of the basis of U ′F. Likewise, the third generator
of U is expanded and echelon reduced to give the rest of the basis for U ′F. To find V ′F, the first two
generators are expanded, semi-echelon reduced and the rows with heads in the middle block kept. The
third generator can be ignored. Finally, the intersection of U ′F and V ′F can found using, for example,
SumIntersectionMatDestructive (HAPprime Datatypes: SumIntersectionMatDestructive).

This algorithm, implemented in the function IntersectionModulesGF (3.7.3), will (for modules
whose generators have zero columns) use less memory than a full vector-space expansion, and in the
case where U and V have no intersection, may need to perform no expansion at all. In the worst
case, both U and V will need a full expansion, using no more memory than the naive implementation.
Since any full expansion is done row-by-row, with echelon reduction each time, it will in general still
require less memory (but will be slower).

3.3 Construction functions

3.3.1 FpGModuleGF construction functions

♦ FpGModuleGF(gens, G[, action, actionBlockSize]) (operation)

♦ FpGModuleGF(gens, groupAndAction) (operation)

♦ FpGModuleGF(ambientDimension, G[, action, actionBlockSize]) (operation)

♦ FpGModuleGF(ambientDimension, groupAndAction) (operation)

♦ FpGModuleGF(G, n) (operation)

♦ FpGModuleGF(groupAndAction, n) (operation)

♦ FpGModuleGF(HAPmod) (operation)

♦ FpGModuleGFNC(gens, G, form, action, actionBlockSize) (operation)

♦ FpGModuleGFNC(ambientDimension, G, action, actionBlockSize) (operation)

♦ FpGModuleGFNC(gens, groupAndAction[, form]) (operation)

Returns: FpGModuleGF
Creates and returns a FpGModuleGF module object. The most commonly-used constructor requires

a list of generators gens and a group G. The group action and block size can be specified using the
action and actionBlockSize parameters, or if these are omitted then the canonical action is
assumed. These parameters can also be wrapped up in a groupAndAction record (see 3.1).
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An empty FpGModuleGF can be constructed by specifying a group and an ambientDimension
instead of a set of generators. A module spanning (FG)n with canonical generators and action can be
constructed by giving a group G and a rank n. A FpGModuleGF can also be constructed from a HAP
FpGModule HAPmod.

The generators in a FpGModuleGF do not need to be a minimal set. If you wish to create a mod-
ule with minimal generators, construct the module from a non-minimal set gens and then use one
of the MinimalGeneratorsModule functions (3.5.9). When constructing a FpGModuleGF from a
FpGModule, the HAP function GeneratorsOfFpGModule (HAP: GeneratorsOfFpGModule) is used
to provide a set of generators, so in this case the generators will be minimal.

Most of the forms of this function perform a few (cheap) tests to make sure that the arguments are
self-consistent. The NC versions of the constructors are provided for internal use, or when you know
what you are doing and wish to skip the tests. See Section 3.3.5 below for an example of usage.

3.3.2 FpGModuleFromFpGModuleGF

♦ FpGModuleFromFpGModuleGF(M) (operation)

Returns: FpGModule
Returns a HAP FpGModule that represents the same module as the FpGModuleGF M . This uses

ModuleVectorSpaceBasis (3.5.7) to find the vector space basis for M and constructs a FpGModule
with this vector space and the same group and action as M See Section 3.3.5 below for an example of
usage.

TODO: This currently constructs an FpGModule object explicitly. It should use a constructor
once one is provided

3.3.3 MutableCopyModule

♦ MutableCopyModule(M) (operation)

Returns: FpGModuleGF
Returns a copy of the module M where the generating vectors are fully mutable. The group and

action in the new module is identical to that in M - only the list of generators is copied and made
mutable. (The assumption is that this function used in situations where you just want a new generating
set.)

3.3.4 CanonicalAction

♦ CanonicalAction(G) (attribute)

♦ CanonicalActionOnRight(G) (attribute)

♦ CanonicalGroupAndAction(G) (attribute)

Returns: Function action(g,v) or a record with elements (group, action,
actionOnRight, actionBlockSize)

Returns a function of the form action(g,v) that performs the canonical group action of an ele-
ment g of the group G on a vector v (acting on the left by default, or on the right with the OnRight
version). The GroupAndAction version of this function returns the actions in a record together with
the group and the action block size. Under the canonical action, a free module FG is represented as a
vector of length |G| over the field F, and the action is a permutation of the vector elements.

Note that these functions are attributes of a group, so that the canonical action for a particular
group object will always be an identical function (which is desirable for comparing and combining
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modules and submodules).

3.3.5 Example: Constructing a FpGModuleGF

The example below constructs four different FG-modules, where G is the quaternion group of order
eight, and the action is the canonical action in each case:

1. M is the module (FG)3

2. S is the submodule of (FG)3 with elements only in the first summand

3. T is a random submodule M generated by five elements

4. U is the trivial (zero) submodule of (FG)4

We check whether S, T and U are submodules of M, examine a random element from M, and convert S
into a HAP FpGModule. For the other functions used in this example, see Section 3.8.

Example
gap> G := SmallGroup(8, 4);;
gap> M := FpGModuleGF(G, 3);
Full canonical module FGˆ3 over the group ring of <pc group of size 8 with
3 generators> in characteristic 2
gap> gen := ListWithIdenticalEntries(24, Zero(GF(2)));;
gap> gen[1] := One(GF(2));;
gap> S := FpGModuleGF([gen], G);
Module over the group ring of <pc group of size 8 with
3 generators> in characteristic 2 with 1 generator in FGˆ
3. Generators are in minimal echelon form.
gap> T := RandomSubmodule(M, 5);
Module over the group ring of <pc group of size 8 with
3 generators> in characteristic 2 with 5 generators in FGˆ3.
gap> U := FpGModuleGF(32, CanonicalGroupAndAction(G));
Module over the group ring of <pc group of size 8 with
3 generators> in characteristic 2 with 0 generators in FGˆ
4. Generators are in minimal echelon form.
gap>
gap> IsSubModule(M, S);
true
gap> IsSubModule(M, T);
true
gap> IsSubModule(M, U);
false
gap>
gap> e := RandomElement(M);
<a GF2 vector of length 24>
gap> Display([e]);
. 1 1 . . 1 . . . . . 1 . . 1 1 . . 1 . 1 . . 1

gap> IsModuleElement(S, e);
false
gap> IsModuleElement(T, e);
true
gap>
gap> FpGModuleFromFpGModuleGF(S);
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Module of dimension 8 over the group ring of <pc group of size 8 with
3 generators> in characteristic 2

3.4 Data access functions

3.4.1 ModuleGroup

♦ ModuleGroup(M) (operation)

Returns: Group
Returns the group of the module M . See Section 3.4.11 below for an example of usage.

3.4.2 ModuleGroupOrder

♦ ModuleGroupOrder(M) (operation)

Returns: Integer
Returns the order of the group of the module M . This function is identical to

Order(ModuleGroup(M)), and is provided for convenience. See Section 3.4.11 below for an ex-
ample of usage.

3.4.3 ModuleAction

♦ ModuleAction(M) (operation)

Returns: Function
Returns the group action function of the module M . This is a function action(g, v) that takes a

group element g and a vector v and returns a vector w that is the result of w = gv. See Section 3.4.11
below for an example of usage.

3.4.4 ModuleActionBlockSize

♦ ModuleActionBlockSize(M) (operation)

Returns: Integer
Returns the block size of the group action of the module M . This is the length of vectors (or

the factor of the length) upon which the group action function acts. See Section 3.4.11 below for an
example of usage.

3.4.5 ModuleGroupAndAction

♦ ModuleGroupAndAction(M) (operation)

Returns: Record with elements (group, action, actionOnRight, actionBlockSize)
Returns details of the module’s group and action in a record with the following elements:

• group The module’s group

• action The module’s group action, as a function of the form action(g, v) that takes a vector
v and returns the vector w = gv

• actionOnRight The module’s group action when acting on the right, as a function of the form
action(g, v) that takes a vector v and returns the vector w = vg
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• actionBlockSize The module’s group action block size. This is the ambient dimension of
vectors in the module FG

This function is provided for convenience, and is used by a number of internal functions. The canoni-
cal groups and action can be constructed using the function CanonicalGroupAndAction (3.3.4). See
Section 3.4.11 below for an example of usage.

3.4.6 ModuleCharacteristic

♦ ModuleCharacteristic(M) (operation)

Returns: Integer
Returns the characteristic of the field F of the FG-module M . See Section 3.4.11 below for an

example of usage.

3.4.7 ModuleField

♦ ModuleField(M) (operation)

Returns: Field
Returns the field F of the FG-module M . See Section 3.4.11 below for an example of usage.

3.4.8 ModuleAmbientDimension

♦ ModuleAmbientDimension(M) (operation)

Returns: Integer
Returns the ambient dimension of the module M . The module M is represented as a submodule of

FGn using generating vectors for a vector space. This function returns the dimension of this underlying
vector space. This is equal to the length of each generating vector, and also n×actionBlockSize.
See Section 3.4.11 below for an example of usage.

3.4.9 AmbientModuleDimension

♦ AmbientModuleDimension(M) (operation)

Returns: Integer
The module M is represented a submodule embedded within the free module FGn. This function

returns n, the dimension of the ambient module. This is the same as the number of blocks. See Section
3.4.11 below for an example of usage.

3.4.10 DisplayBlocks (for FpGModuleGF)

♦ DisplayBlocks(M) (operation)

Returns: nothing
Displays the structure of the module generators gens in a compact human-readable form. Since

the group action permutes generating vectors in blocks of length actionBlockSize, any block that
contains non-zero elements will still contain non-zero elements after the group action, but a block that
is all zero will remain all zero. This operation displays the module generators in a per-block form,
with a * where the block is non-zero and . where the block is all zero.

The standard GAP methods View (Reference: View), Print (Reference: Print) and Display
(Reference: Display) are also available.) See Section 3.6.3 below for an example of usage.
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3.4.11 Example: Accessing data about a FpGModuleGF

In the following example, we construct three terms of a (minimal) resolution of the dihedral group of
order eight, which is a chain complex of FG-modules.

(FG)3→ (FG)3→ FG→ F→ 0

We obtain the last homomorphism in this chain complex and calculate its kernel, returning this as a
FpGModuleGF. We can use the data access functions described above to extract information about this
module.

See Chapters 4 and 2 respectively for more information about FG-module homomorphisms and
resolutions in HAPprime

Example
gap> R := ResolutionPrimePowerGroupRadical(DihedralGroup(8), 2);
Resolution of length 2 in characteristic 2 for <pc group of size 8 with
3 generators> .
No contracting homotopy available.
A partial contracting homotopy is available.

gap> phi := BoundaryFpGModuleHomomorphismGF(R, 2);
<Module homomorphism>

gap> M := KernelOfModuleHomomorphism(phi);
Module over the group ring of <pc group of size 8 with
3 generators> in characteristic 2 with 15 generators in FGˆ3.

gap> # Now find out things about this module M
gap> ModuleGroup(M);
<pc group of size 8 with 3 generators>
gap> ModuleGroupOrder(M);
8
gap> ModuleAction(M);
function( g, v ) ... end
gap> ModuleActionBlockSize(M);
8
gap> ModuleGroupAndAction(M);
rec( group := <pc group of size 8 with 3 generators>,
action := function( g, v ) ... end,
actionOnRight := function( g, v ) ... end, actionBlockSize := 8 )

gap> ModuleCharacteristic(M);
2
gap> ModuleField(M);
GF(2)
gap> ModuleAmbientDimension(M);
24
gap> AmbientModuleDimension(M);
3
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3.5 Generator and vector space functions

3.5.1 ModuleGenerators

♦ ModuleGenerators(M) (operation)

Returns: List of vectors
Returns, as the rows of a matrix, a list of the set of currently-stored generating vectors for

the vector space of the module M . Note that this set is not necessarily minimal. The function
ModuleGeneratorsAreMinimal (3.5.2) will return true if the set is known to be minimal, and the
MinimalGeneratorsModule functions (3.5.9) can be used to ensure a minimal set, if necessary. See
Section 3.5.11 below for an example of usage.

3.5.2 ModuleGeneratorsAreMinimal

♦ ModuleGeneratorsAreMinimal(M) (operation)

Returns: Boolean
Returns true if the module generators are known to be minimal, or false otherwise. Generators

are known to be minimal if the one of the MinimalGeneratorsModule functions (3.5.9) have been
previously used on this module, or if the module was created from a HAP FpGModule. See Section
3.5.11 below for an example of usage.

3.5.3 ModuleGeneratorsAreEchelonForm

♦ ModuleGeneratorsAreEchelonForm(M) (operation)

Returns: Boolean
Return true if the module generators are known to be in echelon form, or (i.e.

EchelonModuleGenerators (3.6.1) has been called for this module), or false otherwise. Some
algorithms work more efficiently if (or require that) the generators of the module are in block-echelon
form, i.e. each generator in the module’s list of generators has its first non-zero block in the same
location or later than the generator before it in the list. See Section 3.5.11 below for an example of
usage.

3.5.4 ModuleIsFullCanonical

♦ ModuleIsFullCanonical(M) (operation)

Returns: Boolean
Returns true if the module is known to represent the full module FGn, with canonical generators

and group action, or false otherwise. A module is only known to be canonical if it was constructed
using the canonical module FpGModuleGF constructor (FpGModuleGF (3.3.1)). If this is true, the
module is displayed in a concise form, and some functions have a trivial implementation. See Section
3.5.11 below for an example of usage.

3.5.5 ModuleGeneratorsForm

♦ ModuleGeneratorsForm(M) (operation)

Returns: String
Returns a string giving the form of the module generators. This may be one of the following:

• "unknown" The form is not known
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• "minimal" The generators are known to be minimal, but not in any particular form

• "fullcanonical" The generators are the canonical (and minimal) generators for FGn

• "semiechelon" The generators are minimal and in semi-echelon form.

• "echelon" The generators are minimal and in echelon form

See Section 3.5.11 below for an example of usage.

3.5.6 ModuleRank

♦ ModuleRank(M) (operation)

♦ ModuleRankDestructive(M) (operation)

Returns: Integer
Returns the rank of the module M , i.e. the number of minimal generators. If the module is al-

ready in minimal form (according to ModuleGeneratorsAreMinimal (3.5.2)) then the number of
generators is returned with no calculation. Otherwise, MinimalGeneratorsModuleGF (3.5.9) or
MinimalGeneratorsModuleGFDestructive (3.5.9) respectively are used to find a set of minimal
generators. See Section 3.5.11 below for an example of usage.

3.5.7 ModuleVectorSpaceBasis

♦ ModuleVectorSpaceBasis(M) (operation)

Returns: List of vectors
Returns a matrix whose rows are a basis for the vector space of the FpGModuleGF module M .

Since FpGModuleGF stores modules as a minimal G-generating set, this function has to calculate all
G-multiples of this generating set and row-reduce this to find a basis. See Section 3.5.11 below for an
example of usage.

TODO: A GF version of this one

3.5.8 ModuleVectorSpaceDimension

♦ ModuleVectorSpaceDimension(M) (operation)

Returns: Integer
Returns the dimension of the vector space of the module M . Since FpGModuleGF stores modules

as a minimal G-generating set, this function has to calculate all G-multiples of this generating set and
row-reduce this to find the size of the basis. See Section 3.5.11 below for an example of usage.

TODO: A GF version of this function

3.5.9 MinimalGeneratorsModule

♦ MinimalGeneratorsModuleGF(M) (operation)

♦ MinimalGeneratorsModuleGFDestructive(M) (operation)

♦ MinimalGeneratorsModuleRadical(M) (operation)

Returns: FpGModuleGF
Returns a module equal to the FpGModuleGF M , but which has a minimal set of generators. Two

algorithms are provided:
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• The two GF versions use EchelonModuleGenerators (3.6.1) and
EchelonModuleGeneratorsDestructive (3.6.1) respectively. In characteristic two, these re-
turn a set of minimal generators, and use less memory than the Radical version, but take longer.
If the characteristic is not two, these functions revert to MinimalGeneratorsModuleRadical.

• The Radical version uses the radical of the module in a manner similar to the function HAP:
GeneratorsOfFpGModule. This is much faster, but requires a considerable amount of tempo-
rary storage space.

See Section 3.5.11 below for an example of usage.

3.5.10 RadicalOfModule

♦ RadicalOfModule(M) (operation)

Returns: FpGModuleGF
Returns radical of the FpGModuleGF module M as another FpGModuleGF. The radical is the module

generated by the vectors v− gv for all v in the set of generating vectors for M and all g in a set of
generators for the module’s group.

The generators for the returned module will not be in minimal form: the
MinimalGeneratorsModule functions (3.5.9) can be used to convert the module to a minimal
form if necessary. See Section 3.5.11 below for an example of usage.

3.5.11 Example: Generators and basis vectors of a FpGModuleGF

Starting with the same module as in the earlier example (Section 3.4.11), we now investi-
gate the generators of the module M. The generating vectors (of which there are 15) returned
by the function KernelOfModuleHomomorphism (4.6.3) are not a minimal set, but the function
MinimalGeneratorsModuleGF (3.5.9) creates a new object N representing the same module, but now
with only four generators. The vector space spanned by these generators has 15 basis vectors, so rep-
resenting the module by a G-generating set instead is much more efficient. (The original generating
set in M was in fact an F-basis, so the dimension of the vector space should come as no surprise.)

We can also find the radical of the module, and this is used internally for the faster, but more
memory-hungry, MinimalGeneratorsModuleRadical (3.5.9).

Example
gap> R := ResolutionPrimePowerGroupRadical(DihedralGroup(8), 2);;
gap> phi := BoundaryFpGModuleHomomorphismGF(R, 2);;
gap> M := KernelOfModuleHomomorphism(phi);;
gap> #
gap> ModuleGenerators(M);
[ <a GF2 vector of length 24>, <a GF2 vector of length 24>,
<a GF2 vector of length 24>, <a GF2 vector of length 24>,
<a GF2 vector of length 24>, <a GF2 vector of length 24>,
<a GF2 vector of length 24>, <a GF2 vector of length 24>,
<a GF2 vector of length 24>, <a GF2 vector of length 24>,
<a GF2 vector of length 24>, <a GF2 vector of length 24>,
<a GF2 vector of length 24>, <a GF2 vector of length 24>,
<a GF2 vector of length 24> ]

gap> ModuleGeneratorsAreMinimal(M);
false
gap> ModuleGeneratorsForm(M);
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"unknown"
gap> #
gap> N := MinimalGeneratorsModuleGF(M);
Module over the group ring of <pc group of size 8 with
3 generators> in characteristic 2 with 4 generators in FGˆ
3. Generators are in minimal echelon form.

gap> M = N; # Check that the new module spans the same space
true
gap> ModuleGeneratorsAreEchelonForm(N);
true
gap> ModuleIsFullCanonical(N);
false
gap> M = N;
true
gap> ModuleVectorSpaceBasis(N);
[ <a GF2 vector of length 24>, <a GF2 vector of length 24>,
<a GF2 vector of length 24>, <a GF2 vector of length 24>,
<a GF2 vector of length 24>, <a GF2 vector of length 24>,
<a GF2 vector of length 24>, <a GF2 vector of length 24>,
<a GF2 vector of length 24>, <a GF2 vector of length 24>,
<a GF2 vector of length 24>, <a GF2 vector of length 24>,
<a GF2 vector of length 24>, <a GF2 vector of length 24>,
<a GF2 vector of length 24> ]

gap> ModuleVectorSpaceDimension(N);
15
gap> #
gap> N2 := MinimalGeneratorsModuleRadical(M);
Module over the group ring of <pc group of size 8 with
3 generators> in characteristic 2 with 4 generators in FGˆ
3. Generators are minimal.

gap> #
gap> R := RadicalOfModule(M);
Module over the group ring of <pc group of size 8 with
3 generators> in characteristic 2 with 120 generators in FGˆ3.

gap> N2 = N;
true

3.6 Block echelon functions

3.6.1 EchelonModuleGenerators

♦ EchelonModuleGenerators(M) (operation)

♦ EchelonModuleGeneratorsDestructive(M) (operation)

♦ SemiEchelonModuleGenerators(M) (operation)

♦ SemiEchelonModuleGeneratorsDestructive(M) (operation)

♦ EchelonModuleGeneratorsMinMem(M) (operation)

♦ EchelonModuleGeneratorsMinMemDestructive(M) (operation)

♦ SemiEchelonModuleGeneratorsMinMem(M) (operation)
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♦ SemiEchelonModuleGeneratorsMinMemDestructive(M) (operation)

Returns: Record (module, headblocks)
Returns a record with two components:

• module A module whose generators span the same vector space as that of the input module M ,
but whose generators are in a block echelon (or semi-echelon) form

• headblocks A list giving, for each generating vector in M , the block in which the head for that
generating row lies

In block-echelon form. each generator is row-reduced using Gg-multiples of the other other generators
to produce a new, equivalent generating set where the first non-zero block in each generator is as far
to the right as possible. The resulting form, with many zero blocks, can allow more memory-efficient
operations on the module. See Section 3.2 for details. In addition, the standard (non-MinMem) form
guarantees that the set of generators are minimal in the sense that no generator can be removed from
the set while leaving the spanned vector space the same. In the GF(2) case, this is the global minimum.

Several versions of this algorithm are provided. The SemiEchelon versions of these functions
do not guarantee a particular generator ordering, while the Echelon versions sort the generators into
order of increasing initial zero blocks. The non-Destructive versions of this function return a new
module and do not modify the input module; the Destructive versions change the generators of the
input module in-place, and return this module. All versions are memory-efficient, and do not need
a full vector-space basis. The MinMem versions are guaranteed to expand at most two generators at
any one time, while the standard version may, in the (unlikely) worst-case, need to expand half of the
generating set. As a result of this difference in the algorithm, the MinMem version is likely to return
a greater number of generators (which will not be minimal), but those generators typically have a
greater number of zero blocks after the first non-zero block in the generator. The MinMem operations
are currently only implemented for GF(2) modules. See Section 3.6.3 below for an example of usage.

3.6.2 ReverseEchelonModuleGenerators

♦ ReverseEchelonModuleGenerators(M) (operation)

♦ ReverseEchelonModuleGeneratorsDestructive(M) (operation)

Returns: FpGModuleGF
Returns an FpGModuleGF module whose vector space spans the same space as the input module

M , but whose generating vectors are modified to try to get as many zero blocks as possible at the end
of each vector. This function performs echelon reduction of generating rows in a manner similar to
EchelonModuleGenerators (3.6.1), but working from the bottom upwards. It is guaranteed that this
function will not change the head block (the location of the first non-zero block) in each generating
row, and hence if the generators are already in an upper-triangular form (e.g. following a call to
EchelonModuleGenerators (3.6.1)) then it will not disturb that form and the resulting generators
will be closer to a diagonal form.

The Destructive version of this function modifies the input module’s generators in-place and
then returns that module; the non-Destructive version works on a copy of the input module and so
will not modify the original module.

This operation is currently only implemented for GF(2) modules. See Section 3.5.11 below for an
example of usage.
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3.6.3 Example: Converting a FpGModuleGF to block echelon form

We can construct a larger module than in the earlier examples (Sections 3.4.11 and 3.5.11) by taking
the kernel of the third boundary homomorphism of a minimal resolution of a group of order 32, which
as returned by the function KernelOfModuleHomomorphism (4.6.3) has a generating set with many
redundant generators. We display the block structure of the generators of this module after applying
various block echelon reduction functions.

Example
gap> R := ResolutionPrimePowerGroupRadical(SmallGroup(32, 10), 3);;
gap> phi := BoundaryFpGModuleHomomorphismGF(R, 3);;
gap> #
gap> M := KernelOfModuleHomomorphism(phi);
Module over the group ring of <pc group of size 32 with
5 generators> in characteristic 2 with 65 generators in FGˆ4.

gap> #
gap> N := SemiEchelonModuleGenerators(M);
rec( module := Module over the group ring of <pc group of size 32 with

5 generators> in characteristic 2 with 5 generators in FGˆ
4. Generators are in minimal semi-echelon form.
, headblocks := [ 2, 3, 1, 1, 3 ] )

gap> DisplayBlocks(N.module);
Module over the group ring of Group( [ f1, f2, f3, f4, f5 ] )
in characteristic 2 with 5 generators in FGˆ4.

[.*.*]
[..**]
[***.]
[****]
[..**]
Generators are in minimal semi-echelon form.
gap> N2 := SemiEchelonModuleGeneratorsMinMem(M);
rec( module := Module over the group ring of <pc group of size 32 with

5 generators> in characteristic 2 with 9 generators in FGˆ4.
, headblocks := [ 2, 1, 3, 1, 1, 4, 1, 3, 4 ] )

gap> DisplayBlocks(N2.module);
Module over the group ring of Group( [ f1, f2, f3, f4, f5 ] )
in characteristic 2 with 9 generators in FGˆ4.

[.*..]
[**..]
[..**]
[****]
[****]
[...*]
[****]
[..**]
[...*]

gap> #
gap> EchelonModuleGeneratorsDestructive(M);;
gap> DisplayBlocks(M);
Module over the group ring of Group( [ f1, f2, f3, f4, f5 ] )
in characteristic 2 with 5 generators in FGˆ4.

[***.]
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[****]
[.*.*]
[..**]
[..**]
Generators are in minimal echelon form.
gap> ReverseEchelonModuleGeneratorsDestructive(M);
Module over the group ring of <pc group of size 32 with
5 generators> in characteristic 2 with 5 generators in FGˆ
4. Generators are in minimal echelon form.

gap> DisplayBlocks(M);
Module over the group ring of Group( [ f1, f2, f3, f4, f5 ] )
in characteristic 2 with 5 generators in FGˆ4.

[***.]
[****]
[.*..]
[..*.]
[..**]
Generators are in minimal echelon form.

3.7 Sum and intersection functions

3.7.1 DirectSumOfModules

♦ DirectSumOfModules(M, N) (operation)

♦ DirectSumOfModules(coll) (operation)

♦ DirectSumOfModules(M, n) (operation)

Returns: FpGModule
Returns the FpGModuleGF module that is the direct sum of the specified modules (which must

have a common group and action). The input can be either two modules M and N , a list of modules
coll, or one module M and an exponent n specifying the number of copies of M to sum. See Section
3.7.5 below for an example of usage.

If the input modules all have minimal generators and/or echelon form, the construction of the
direct sum guarantees that the output module will share the same form.

3.7.2 DirectDecompositionOfModule

♦ DirectDecompositionOfModule(M) (operation)

♦ DirectDecompositionOfModuleDestructive(M) (operation)

Returns: List of FpGModuleGFs
Returns a list of FpGModuleGFs whose direct sum is equal to the input FpGModuleGF module M .

The list may consist of one element: the original module.
This function relies on the block structure of a set of generators that have been con-

verted to both echelon and reverse-echelon form (see EchelonModuleGenerators (3.6.1) and
ReverseEchelonModuleGenerators (3.6.2)), and calls these functions if the module is not already
in echelon form. In this form, it can be possible to trivially identify direct summands. There is no
guarantee either that this function will return a decomposition if one is available, or that the modules
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returned in a decomposition are themselves indecomposable. See Section 3.7.5 below for an example
of usage.

The Destructive version of this function uses the Destructive versions of the echelon func-
tions, and so modifies the input module and returns modules who share generating rows with the
modified M . The non-Destructive version operates on a copy of M , and returns modules with unique
rows.

3.7.3 IntersectionModules

♦ IntersectionModules(M, N) (operation)

♦ IntersectionModulesGF(M, N) (operation)

♦ IntersectionModulesGFDestructive(M, N) (operation)

♦ IntersectionModulesGF2(M, N) (operation)

Returns: FpGModuleGF
Returns the FpGModuleGF module that is the intersection of the modules M and N . This func-

tion calculates the intersection using vector space methods (i.e. SumIntersectionMatDestructive
(HAPprime Datatypes: SumIntersectionMatDestructive)). The standard version works on the
complete vector space bases of the input modules. The GF version considers the block structure of
the generators of M and N and only expands the necessary rows and blocks. This can lead to a large
saving and memory if M and N are in echelon form and have a small intersection. See Section 3.2.4
for details. See Section 3.7.5 below for an example of usage. The GF2 version computes the inter-
section by a G-version of the standard vector space algorithm, using EchelonModuleGenerators
(3.6.1) to perform echelon reduction on an augmented set of generators. This is much slower than the
GF version, but may use less memory.

The vector spaces in FpGModuleGFs are assumed to all be with respect to the same canonical
basis, so it is assumed that modules are compatible if they have the same group and the same ambient
dimension.

The Destructive version of the GF function corrupts or permutes the generating vectors of M
and N , leaving it invalid; the non-destructive version operates on copies of them, leaving the original
modules unmodified. The generating vectors in the module returned by this function are in fact also a
vector space basis for the module, so will not be minimal. The returned module can be converted to a
set of minimal generators using one of the MinimalGeneratorsModule functions (3.5.9).

This operation is currently only defined for GF(2).

3.7.4 SumModules

♦ SumModules(M, N) (operation)

Returns: FpGModuleGF
Returns the FpGModuleGF module that is the sum of the input modules M and N . This function

simply concatenates the generating vectors of the two modules and returns the result. If a set of
minimal generators are needed then use one of the MinimalGeneratorsModule functions (3.5.9) on
the result. See Section 3.7.5 below for an example of usage.

The vector spaces in FpGModuleGF are assumed to all be with respect to the same canonical basis,
so it is assumed that modules are compatible if they have the same group and the same ambient
dimension.
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3.7.5 Example: Sum and intersection of FpGModuleGFs

We can construct the direct sum of FG-modules, and (attempt to) calculate a direct decomposition of
a module. For example, we can show that

(FG)2⊕FG = FG⊕FG⊕FG
Example

gap> G := CyclicGroup(64);;
gap> FG := FpGModuleGF(G, 1);
Full canonical module FGˆ1 over the group ring of <pc group of size 64 with
6 generators> in characteristic 2

gap> FG2 := FpGModuleGF(G, 2);
Full canonical module FGˆ2 over the group ring of <pc group of size 64 with
6 generators> in characteristic 2

gap> M := DirectSumOfModules(FG2, FG);
Full canonical module FGˆ3 over the group ring of <pc group of size 64 with
6 generators> in characteristic 2

gap> DirectDecompositionOfModule(M);
[ Module over the group ring of <pc group of size 64 with

6 generators> in characteristic 2 with 1 generator in FGˆ
1. Generators are in minimal echelon form.
, Module over the group ring of <pc group of size 64 with
6 generators> in characteristic 2 with 1 generator in FGˆ
1. Generators are in minimal echelon form.
, Module over the group ring of <pc group of size 64 with
6 generators> in characteristic 2 with 1 generator in FGˆ
1. Generators are in minimal echelon form.
]

We can also compute the sum and intersection of FG-modules. In the example below we construct
two submodules of FG, where G is the dihedral group of order four: M is the submodule generated by
g1+g2, and N is the submodule generated by g1+g2+g3+g4. We calculate their sum and intersection.
Since N is in this case a submodule of M it is easy to check that the correct results are obtained.

Example
gap> G := DihedralGroup(4);;
gap> M := FpGModuleGF([[1,1,0,0]]*One(GF(2)), G);
Module over the group ring of <pc group of size 4 with
2 generators> in characteristic 2 with 1 generator in FGˆ
1. Generators are in minimal echelon form.

gap> N := FpGModuleGF([[1,1,1,1]]*One(GF(2)), G);
Module over the group ring of <pc group of size 4 with
2 generators> in characteristic 2 with 1 generator in FGˆ
1. Generators are in minimal echelon form.

gap> #
gap> S := SumModules(M,N);
Module over the group ring of <pc group of size 4 with
2 generators> in characteristic 2 with 2 generators in FGˆ1.



HAPprime 33

gap> I := IntersectionModules(M,N);
Module over the group ring of <pc group of size 4 with
2 generators> in characteristic 2 with 1 generator in FGˆ1.

gap> #
gap> S = M and I = N;
true

3.8 Miscellaneous functions

3.8.1 = (for FpGModuleGF)

♦ =(M, N) (operation)

Returns: Boolean
Returns true if the modules are equal, false otherwise. This checks that the groups and actions

in each module are equal (i.e. identical), and that the vector space spanned by the two modules are
the same. (All vector spaces in FpGModuleGFs of the same ambient dimension are assumed to be
embedded in the same canonical basis.) See Section 3.5.11 above for an example of usage.

3.8.2 IsModuleElement

♦ IsModuleElement(M, elm) (operation)

♦ IsModuleElement(M, coll) (operation)

Returns: Boolean
Returns true if the vector elm can be interpreted as an element of the module M , or false

otherwise. If a collection of elements is given as the second argument then a list of responses is
returned, one for each element in the collection. See Section 3.3.5 above for an example of usage.

3.8.3 IsSubModule

♦ IsSubModule(M, N) (operation)

Returns: Boolean
Returns true if the module N is a submodule of M . This checks that the modules have the same

group and action, and that the generators for module N are elements of the module M . (All vector
spaces in FpGModuleGFs of the same ambient dimension are assumed to be embedded in the same
canonical basis.) See Section 3.3.5 above for an example of usage.

3.8.4 RandomElement

♦ RandomElement(M[, n]) (operation)

Returns: Vector
Returns a vector which is a random element from the module M . If a second argument, n is give,

then a list of n random elements is returned. See Section 3.3.5 above for an example of usage.



HAPprime 34

3.8.5 Random Submodule

♦ RandomSubmodule(M, ngens) (operation)

Returns: FpGModuleGF
Returns a FpGModuleGF module that is a submodule of M , with ngens generators selected at

random from elements of M . These generators are not guaranteed to be minimal, so the rank of the
submodule will not necessarily be equal to ngens. If a module with minimal generators is required,
the MinimalGeneratorsModule functions (3.5.9) can be used to convert the module to a minimal
form See Section 3.3.5 above for an example of usage.



Chapter 4

FG-module homomorphisms

4.1 The FpGModuleHomomorphismGF datatype

Linear homomorphisms between free FG-modules (as FpGModuleGF objects - see Chapter 3) are
represented in HAPprime using the FpGModuleHomomorphismGF datatype. This represents module
homomorphisms in a similar manner to FG-modules, using a set of generating vectors, in this case
vectors that generate the images in the target module of the generators of the source module.

Three items need to be passed to the constructor function FpGModuleHomomorphismGF (4.4.1):

• source the source FpGModuleGF module for the homomorphism

• target the target FpGModuleGF module for the homomorphism

• gens a list of vectors that are the images (in target) under the homomorphisms of each of the
generators stored in source

4.2 Calculating the kernel of a FG-module homorphism by splitting
into two homomorphisms

HAPprime represents a homomorphism between two FG-modules as a list of generators for the image
of the homomorphism. Each generator is given as an element in the target module, represented as a
vector in the same manner as used in the FpGModuleGF datatype (see Chapter 3). Given a set of such
generating vectors, an F-generating set for the image of the homomorphism (as elements of the target
module’s vector space) is given by taking all G-multiples of the generators. Writing the vectors in
this expanded set as a matrix, the kernel of the boundary homomorphism is the (left) null-space of
this matrix. As with FpGModuleGFs, the block structure of the generating vectors (see Section 3.2.1)
allows this null-space to be calculated without necessarily expanding the whole matrix.

This basic algorithm is implemented in the HAPprime function
KernelOfModuleHomomorphismSplit (4.6.3). The generating vectors for a module homo-
morphism H are divided in half, with the homomorphism generated by the first half of the generating
vectors being called U and that by the second half being called V . Given this partition the kernel of
H can be defined as

ker(H) = preimU(I)∩ [−preimV (I)]

where

35
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• I = im(U)∩ im(V ) is the intersection of the images of the two homomorphisms U and V

• preimU(I) the set of all preimages of I under U

• preimV (I) the set of all preimages of I under V

Rather than computing the complete set of preimages, instead the implementation takes a preimage
representative of each generator for I and adds the kernel of the homomorphisms U and V . The means
that instead of calculating the null-space of the full expanded matrix, we can compute the answer by
calculating the kernels of two homomorphisms with fewer generators, as well as the intersection of
two modules, and some preimage representatives. Each of these operations takes less memory than the
naive null-space calculation. The intersection of two FG-modules can be compactly calculated using
the generators’ block structure (see Section 3.2.4), while the kernels of U and V can be computed
recursively using these same algorithm. The block structure can also help in calculating the preimage,
but at a considerable cost in time, so this is not done. However, since U and V have fewer generators
than the original homomorphism H, a space saving is still made.

In the case where the problem is seperable, i.e. a U and V can be found for which there is
no intersection, this approach can give a large saving. The separable components of the homo-
morphism can be readily identified from the block structure of the generators (they are the rows
which share no blocks or heads with other rows), and the kernels of these can be calculated inde-
pendently, with no intersection to worry about. This is implemented in the alternative algorithm
KernelOfModuleHomomorphismIndependentSplit (4.6.3).

4.3 Calculating the kernel of a FG-module homorphism by column re-
duction and partitioning

The list of generators of the image of a FG-module homomorphism can be interpreted as the rows
of a matrix A with elements in FG, and it is the kernel of this matrix which must be found (i.e. the
solutions to xA = 0. If column reduction is performed on this matrix (by adding FG-multiples of other
columns to a column), the kernel is left unchanged, and this process can be performed to enable the
kernel to be found by a recursive algorithm similar to standard back substitution methods.

Given the matrix A= (ai j), take the FG-module generated by the first row (a1 j) and find a minimal
(or small) subset of elements {a1 j} j∈J that generate this module. Without altering the kernel, we can
permute the columns of A such that J = {1 . . . t}. Taking F and G-multiples of these columns from
the remaining columns, the first row of these columns can be reduced to zero, giving a new matrix A′.
This matrix can be partitioned as follows: (

B 0
C D

)
where B is 1× t, C is (m−1)× t and D is (m−1)× (n− t). It is assumed that B and C are ‘small’ and
operations on these can can be easily handled in memory using standard linear algebra, while D may
still be large.

Taking the FG-module generated by the t columns which form the BC partition of the matrix, we
compute E, a set of minimal generators for the submodule of this which is zero in the first row. These
are added as columns at the end of A′, giving a matrix(

B 0 0
C D E

)
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The kernel of this matrix can be shown to be(
kerB 0

L ker(DE)

)
where

L = preimB((ker(DE))C)

The augmentation of D with E guarantees that this preimage always exists. Since B and C are small,
both kerB and L are easy to compute using linear algebra, while ker(DE) can be computed by recur-
sion.

Unfortunately, E can be large, and the accumulated increase of size of the matrix over many
recursions negates the time and memory saving that this algorithm might be expected to give. Testing
indicates that it is currently no faster than the KernelOfModuleHomomorphismSplit (4.6.3) method,
and does not save much memory over the full expansion using linear algebra. An improved version of
this algorithm would reduce E by D before augmentation, thus adding a smaller set of generators and
restricting the explosion in size. If D were already in echelon form, this would also be time-efficient.

4.4 Construction functions

4.4.1 FpGModuleHomomorphismGF construction functions

♦ FpGModuleHomomorphismGF(S, T, gens) (operation)

♦ FpGModuleHomomorphismGFNC(S, T, gens) (operation)

Returns: FpGModuleHomomorphismGF
Creates and returns an FpGModuleHomomorphismGF module homomorphism object. This repre-

sents the homomorphism from the module S to the module T with a list of vectors gens whose rows
are the images in T of the generators of S. The modules must (currently) be over the same group.

The standard constructor checks that the homomorphism is compatible with the modules, i.e. that
the vectors in gens have the correct dimension and that they lie within the target module T. It also
checks whether the generators of S are minimal. If they are not, then the homomorphism is created
with a copy of S that has minimal generators (using MinimalGeneratorsModuleRadical (3.5.9)),
and gens is also copied and converted to agree with the new form of S. If you wish to skip these
checks then use the NC version of this function.

IMPORTANT: The generators of the module S and the generator matrix gens must be remain
consistent for the lifetime of this homomorphism. If the homomorphism is constructed with a mutable
source module or generator matrix, then you must be careful not to modify them while the homomor-
phism is needed.

4.4.2 Example: Constructing a FpGModuleHomomorphismGF

In this example we construct the module homomorphism φ : (FG)2→ FG which maps both generators
of (FG)2 to the generator of FG

Example
gap> G := SmallGroup(8, 4);;
gap> im := [1,0,0,0,0,0,0,0]*One(GF(2));
[ Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ]
gap> phi := FpGModuleHomomorphismGF(
> FpGModuleGF(G, 2),
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> FpGModuleGF(G, 1),
> [im, im]);
<Module homomorphism>

4.5 Data access functions

4.5.1 SourceModule

♦ SourceModule(phi) (operation)

Returns: FpGModuleGF
Returns the source module for the homomorphism phi, as an FpGModuleGF.

4.5.2 TargetModule

♦ TargetModule(phi) (operation)

Returns: FpGModuleGF
Returns the targetmodule for the homomorphism phi, as an FpGModuleGF.

4.5.3 ModuleHomomorphismGeneratorMatrix

♦ ModuleHomomorphismGeneratorMatrix(phi) (operation)

Returns: List of vectors
Returns the generating vectors gens of the representation of the homomorphism phi. These

vectors are the images in the target module of the generators of the source module.

4.5.4 DisplayBlocks (for FpGModuleHomomorphismGF)

♦ DisplayBlocks(phi) (method)

Returns: nothing
Prints a detailed description of the module in human-readable form, with the module generators

and generator matrix shown in block form. The standard GAP methods View (Reference: View),
Print (Reference: Print) and Display (Reference: Display) are also available.)

4.5.5 DisplayModuleHomomorphismGeneratorMatrix

♦ DisplayModuleHomomorphismGeneratorMatrix(phi) (method)

Returns: nothing
Prints a detailed description of the module homomorphism generating vectors gens in human-

readable form. This is the display method used in the Display (Reference: Display) method for this
datatype.

4.5.6 DisplayModuleHomomorphismGeneratorMatrixBlocks

♦ DisplayModuleHomomorphismGeneratorMatrixBlocks(phi) (method)

Returns: nothing
Prints a detailed description of the module homomorphism generating vectors gens in human-

readable form. This is the function used in the DisplayBlocks (4.5.4) method.



HAPprime 39

4.5.7 Example: Accessing data about a FpGModuleHomomorphismGF

A free FG resolution is a chain complex of FG-modules and homomorphisms, and the homomor-
phisms in a HAPResolution (see Chapter 2) can be extracted as a FpGModuleHomomorphismGF
using the function BoundaryFpGModuleHomomorphismGF (2.4.6). We construct a resolution R and
then examine the third resolution in the chain complex, which is a FG-module homomorphism
d3 : (FG)7→ (FG)5.

Example
gap> R := ResolutionPrimePowerGroupRadical(SmallGroup(64, 141), 3);;
#I Dimension 2: rank 5
#I Dimension 3: rank 7
gap> d3 := BoundaryFpGModuleHomomorphismGF(R, 3);;
gap> SourceModule(d3);
Full canonical module FGˆ7 over the group ring of <pc group of size 64 with
6 generators> in characteristic 2

gap> TargetModule(d3);
Full canonical module FGˆ5 over the group ring of <pc group of size 64 with
6 generators> in characteristic 2

gap> ModuleHomomorphismGeneratorMatrix(d3);
<an immutable 7x320 matrix over GF2>
gap> DisplayBlocks(d3);
Module homomorphism with source:
Full canonical module FGˆ7 over the group ring of Group(
[ f1, f2, f3, f4, f5, f6 ] )
in characteristic 2

and target:
Full canonical module FGˆ5 over the group ring of Group(
[ f1, f2, f3, f4, f5, f6 ] )
in characteristic 2

and generator matrix:
[*.*.*]
[*****]
[.**..]
[.**..]
[..**.]
[...**]
[...*.]

Note that the module homomorphism generating vectors in a resolution calculated using HAP-
prime are in block-echelon form (see Section 3.2). This makes it efficient to compute the kernel of
this homomorphism using KernelOfModuleHomomorphismSplit (4.6.3), as described in Section 4.2,
since there is only a small intersection between the images generated by the top and bottom halves of
the generating vectors.
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4.6 Image and kernel functions

4.6.1 ImageOfModuleHomomorphism

♦ ImageOfModuleHomomorphism(phi) (operation)

♦ ImageOfModuleHomomorphism(phi, M) (operation)

♦ ImageOfModuleHomomorphism(phi, elm) (operation)

♦ ImageOfModuleHomomorphism(phi, coll) (operation)

♦ ImageOfModuleHomomorphismDestructive(phi, elm) (operation)

♦ ImageOfModuleHomomorphismDestructive(phi, coll) (operation)

Returns: FpGModuleGF, vector or list of vectors depending on argument
For a module homomorphism phi, the one-argument function returns the module that is the

image of the homomorphism, while the two-argument versions return the result of mapping of an
FpGModuleGF M , a module element elm (given as a vector), or a collection of module elements coll
through the homomorphism. This uses standard linear algebra to find the image of elements from the
source module.

The Destructive versions of the function will corrupt the second parameter, which must be
mutable as a result. The version of this operation that returns a module does not guarantee that the
module will be in minimal form, and one of the MinimalGeneratorsModule functions (3.5.9) should
be used on the result if a minimal set of generators is needed.

4.6.2 PreImageRepresentativeOfModuleHomomorphism

♦ PreImageRepresentativeOfModuleHomomorphism(phi, elm) (operation)

♦ PreImageRepresentativeOfModuleHomomorphism(phi, coll) (operation)

♦ PreImageRepresentativeOfModuleHomomorphism(phi, M) (operation)

♦ PreImageRepresentativeOfModuleHomomorphismGF(phi, elm) (operation)

♦ PreImageRepresentativeOfModuleHomomorphismGF(phi, coll) (operation)

For an element elm in the image of phi, this returns a representative of the set of preimages of
elm under phi, otherwise it returns fail. If a list of vectors coll is provided then the function
returns a list of preimage representatives, one for each element in the list (the returned list can contain
fail entries if there are vectors with no solution). For an FpGModuleGF module M , this returns a
module whose image under phi is M (or fail). The module returned will not necessarily have
minimal generators, and one of the MinimalGeneratorsModule functions (3.5.9) should be used on
the result if a minimal set of generators is needed.

The standard functions use linear algebra, expanding the generator matrix into a full matrix and
using SolutionMat (Reference: SolutionMat) to calculate a preimage of elm. In the case where a
list of vectors is provided, the matrix decomposition is only performed once, which can save signifi-
cant time.

The GF versions of the functions can give a large memory saving when the generators of the
homomorphism phi are in echelon form, and operate by doing back-substitution using the generator
form of the matrices.

4.6.3 KernelOfModuleHomomorphism

♦ KernelOfModuleHomomorphism(phi) (operation)

♦ KernelOfModuleHomomorphismSplit(phi) (operation)
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♦ KernelOfModuleHomomorphismIndependentSplit(phi) (operation)

♦ KernelOfModuleHomomorphismGF(phi) (operation)

Returns: FpGModuleGF
Returns the kernel of the module homomorphism phi, as an FpGModuleGF module. There are

three independent algorithms for calculating the kernel, represented by different versions of this func-
tion:

• The standard version calculates the kernel by the obvious vector-space method. The homo-
morphism’s generators are expanded into a full vector-space basis and the kernel of that vector
space homomorphism is found. The generators of the returned module are in fact a vector space
basis for the kernel module.

• The Split version divides the homomorphism into two (using the first half and the second half
of the generating vectors), and uses the preimage of the intersection of the images of the two
halves to calculate the kernel (see Section 4.2). If the generating vectors for phi are in block
echelon form (see Section 3.2), then this approach provides a considerable memory saving over
the standard approach.

• The IndependentSplit version splits the generating vectors into sets that generate vector
spaces which have no intersection, and calculates the kernel as the sum of the kernels of those
independent rows. If the generating vectors can be decomposed in this manner (i.e. the the
generator matrix is in a diagonal form), this will provide a very large memory saving over the
standard approach.

• The GF version performs column reduction and partitioning of the generator matrix to enable
a recursive approach to computing the kernel (see Section 4.3). The level of partitioning is
governed by the option MaxFGExpansionSize, which defaults to 109, allowing about 128Mb
of memory to be used for standard linear algebra before partitioning starts. See (Reference:
Options Stack) for details of using options in GAP

None of these basis versions of the functions guarantee to return a minimal set of generators, and one
of the MinimalGeneratorsModule functions (3.5.9) should be used on the result if a minimal set of
generators is needed. All of the functions leave the input homomorphism phi unchanged.

4.6.4 Example: Kernel and Image of a FpGModuleHomomorphismGF

A free FG-resolution of a module is an exact sequence of module homomorphisms. In this example we
use the functions ImageOfModuleHomomorphism (4.6.1) and KernelOfModuleHomomorphism (4.6.3)
to check that one of the sequences in a resolution is exact, i.e. that in the sequence

M3→M2→M1

the image of the first homomorphism d3 : M3→M2 is the kernel of the second homomorphism d2 :
M2→M1

We also demonstrate that we can find the image and preimage of module elements under our
module homomorphisms. We take an element e of M2, in this case by taking the first generating
element of the kernel of d2, and map it up to M3 and back.

Finally, we compute the kernel using the other available methods, and check that the results are
the same.
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Example
gap> R := ResolutionPrimePowerGroupRadical(SmallGroup(8, 3), 3);;
gap> d2 := BoundaryFpGModuleHomomorphismGF(R, 2);;
gap> d3 := BoundaryFpGModuleHomomorphismGF(R, 3);;
gap> #
gap> I := ImageOfModuleHomomorphism(d3);
Module over the group ring of <pc group of size 8 with
3 generators> in characteristic 2 with 4 generators in FGˆ3.

gap> K := KernelOfModuleHomomorphism(d2);
Module over the group ring of <pc group of size 8 with
3 generators> in characteristic 2 with 15 generators in FGˆ3.

gap> I = K;
true
gap> #
gap> e := ModuleGenerators(K)[1];;
gap> PreImageRepresentativeOfModuleHomomorphism(d3, e);
<a GF2 vector of length 32>
gap> f := PreImageRepresentativeOfModuleHomomorphism(d3, e);
<a GF2 vector of length 32>
gap> ImageOfModuleHomomorphism(d3, f);
<a GF2 vector of length 24>
gap> last = e;
true
gap> #
gap> L := KernelOfModuleHomomorphismSplit(d2);
Module over the group ring of <pc group of size 8 with
3 generators> in characteristic 2 with 5 generators in FGˆ3.

gap> K = L;
true
gap> M := KernelOfModuleHomomorphismGF(d2);
Module over the group ring of <pc group of size 8 with
3 generators> in characteristic 2 with 4 generators in FGˆ
3. Generators are minimal.

gap> K = M;
true



Chapter 5

General Functions

Some of the functions provided by HAPprime are not specifically aimed at homological algebra or
extending the HAP package. The functions in this chapter, which are used internally by HAPprime
extend some of the standard GAP functions and datatypes.

5.1 Matrices

For details of the standard GAP vector and matrix functions, see (Tutorial: matrices) and (Reference:
Matrices) in the GAP tutorial and reference manuals. HAPprime provides improved versions of a
couple of standard matrix operations, and two small helper functions.

5.1.1 SumIntersectionMatDestructive

♦ SumIntersectionMatDestructive(U, V) (operation)

♦ SumIntersectionMatDestructiveSE(Ubasis, Uheads, Vbasis, Vheads) (operation)

Returns a list of length 2 with, at the first position, the sum of the vector spaces generated by the
rows of U and V , and, at the second position, the intersection of the spaces.

Like the GAP core function SumIntersectionMat (Reference: SumIntersectionMat), this per-
forms Zassenhaus’ algorithm to compute bases for the sum and the intersection. However, this version
operates directly on the input matrices (thus corrupting them), and is rewritten to require only approx-
imately 1.5 times the space of the original input matrices. By contrast, the original GAP version uses
three times the memory of the original matrices to perform the calculation, and since it doesn’t modify
the input matrices will require a total of four times the space of the original matrices.

The function SumIntersectionMatDestructiveSE takes as arguments not a pair of generating
matrices, but a pair of semi-echelon basis matrices and the corresponding head locations, such as
is returned by a call to SemiEchelonMatDestructive (Reference: SemiEchelonMatDestructive)
(these arguments must all be mutable, so SemiEchelonMat (Reference: SemiEchelonMat) cannot
be used). This function is used internally by SumIntersectionMatDestructive, and is provided for
the occasions when the user might already have the semi-echelon versions available, in which case a
small amount of time will be saved.
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5.1.2 SolutionMat (for multiple vectors)

♦ SolutionMat(M, V) (operation)

♦ SolutionMatDestructive(M, V) (operation)

Calculates, for each row vector vi in the matrix V , a solution to xi×M = vi, and returns these
solutions in a matrix X , whose rows are the vectors xi. If there is not a solution for a vi, then fail is
returned for that row.

These functions are identical to the kernel functions SolutionMat (Reference: SolutionMat)
and SolutionMatDestructive (Reference: SolutionMatDestructive), but are provided for cases
where multiple solutions using the same matrix M are required. In these cases, using this function is
far faster, since the matrix is only decomposed once.

The Destructive version corrupts both the input matrices, while the non-Destructive version
operates on copies of these.

5.1.3 IsSameSubspace

♦ IsSameSubspace(U, V) (operation)

Returns true if the subspaces spanned by the rows of U and V are the same, false otherwise.
This function treats the rows of the two matrices as vectors from the same vector space (with the

same basis), and tests whether the subspace spanned by the two sets of vectors is the same.

5.1.4 PrintDimensionsMat

♦ PrintDimensionsMat(M) (operation)

Returns a string containing the dimensions of the matrix M in the form "mxn", where m is the
number of rows and n the number of columns. If the matrix is empty, the returned string is "empty".

5.1.5 Example: matrices and vector spaces

GAP uses rows of a matrix to represent basis vectors for a vector space. In this example we have two
matrics U and V that we suspect represent the same subspace. Using SolutionMat (5.1.2) we can see
that V lies in U , but IsSameSubspace (5.1.3) shows that they are the same subspace, as is confirmed
by having identical sums and intersections.

Example
gap> U := [[1,2,3],[4,5,6]];;
gap> V := [[3,3,3],[5,7,9]];;
gap> SolutionMat(U, V);
[ [ -1, 1 ], [ 1, 1 ] ]
gap> IsSameSubspace(U, V);
true
gap> SumIntersectionMatDestructive(U, V);
[ [ [ 1, 2, 3 ], [ 0, 1, 2 ] ], [ [ 0, 1, 2 ], [ 1, 0, -1 ] ] ]
gap> IsSameSubspace(last[1], last[2]);
true
gap> PrintDimensionsMat(V);
"2x3"
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5.2 Groups

Small groups in GAP can be indexed by their small groups library number (Reference: Small
Groups). An alternative indexing scheme, the Hall-Senior number, is used by Jon Carlson to publish
his cohomology ring calculations at http://www.math.uga.edu/˜lvalero/cohointro.html. To
allow comparison with these results, we provide a function that converts from the GAP small groups
library numbers to Hall-Senior number for the groups of order 8, 16, 32 and 64.

5.2.1 HallSeniorNumber

♦ HallSeniorNumber(order, i) (attribute)

♦ HallSeniorNumber(G) (attribute)

Returns: Integer
Returns the Hall-Senior number for a small group (of order 8, 16, 32 or 64). The group can be

specified an order, i pair from the GAP (Reference: Small Groups) library, or as a group G, in
which case IdSmallGroup (Reference: IdSmallGroup) is used to identify the group.

Example
gap> HallSeniorNumber(32, 5);
20
gap> HallSeniorNumber(SmallGroup(64, 1));
11

http://www.math.uga.edu/~lvalero/cohointro.html


Chapter 6

Internal functions

6.1 Matrices as G-generators of a FG-module vector space

Both FpGModuleGF (Chapter 3) and FpGModuleHomomorphismGF (Chapter 4) store a matrix whose
rows are G-generators for a module vector space (the module and the homomorphism’s image respec-
tively). The internal functions listed here provide common operations for dealing with these matrices.

6.1.1 HAPPRIME ValueOptionMaxFGExpansionSize

♦ HAPPRIME ValueOptionMaxFGExpansionSize(field, group) (operation)

Returns: Integer
Returns the maximum matrix expansion size. This is read from the MaxFGExpansionSize

option from the GAP options stack (Reference: Options Stack), computed using the
MaxFGExpansionMemoryLimit option.

6.1.2 HAPPRIME KernelOfGeneratingRowsDestructive

♦ HAPPRIME KernelOfGeneratingRowsDestructive(gens, rowlengths, GA) (operation)

Returns: List
Returns a list of generating vectors for the kernel of the FG-module homomorphism defined by

the generating rows gens using the group and action GA.
This function computes the kernel recursively by partitioning the generating rows into(

B 0
C D

)
doing column reduction if necessary to get the zero block at the top right. The matrices B > and C
are small enough to be expanded, while the kernel of D is calculated by recursion. The argument
rowlengths lists the number of non-zero blocks in each row; the rest of each row is taken to be
zero. This allows the partitioning to be more efficiently performed (i.e. column reduction is not always
required).

The GAP options stack (Reference: Options Stack) variable MaxFGExpansionSize can be used
to specify the maximum allowable expanded matrix size. This governs the size of the B and C matri-
ces, and thus the number of recursions before the kernel of D is also computed by recursion. A high
value for will allow larger expansions and so faster computation at the cost of more memory. The
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MaxFGExpansionMemoryLimit option can also be used, which sets the maximum amount of mem-
ory that GAP is allowed to use (as a string containing an integer with the suffix k, M or G to indicate
kilobyes, megabytes or gigabytes respectively). In this case, the function looks at the free memory
available to GAP and computes an appropriate value for MaxFGExpansionSize.

6.1.3 HAPPRIME GActMatrixColumns

♦ HAPPRIME GActMatrixColumns(g, Vt, GA) (operation)

♦ HAPPRIME GActMatrixColumnsOnRight(g, Vt, GA) (operation)

Returns: Matrix
Returns the matrix that results from the applying the group action u = gv (or u = vg in the case of

the OnRight version of this function) to each column vector in the matrix Vt. By acting on columns of
a matrix (i.e. the transpose of the normal GAP representation), the group action is just a permutation
of the rows of the matrix, which is a fast operation. The group and action are passed in GA using the
ModuleGroupAndAction (3.4.5) record.

If the input matrix Vt is in a compressed matrix representation, then the returned matrix will also
be in compressed matrix representation.

6.1.4 HAPPRIME ExpandGeneratingRow

♦ HAPPRIME ExpandGeneratingRow(gen, GA) (operation)

♦ HAPPRIME ExpandGeneratingRows(gens, GA) (operation)

♦ HAPPRIME ExpandGeneratingRowOnRight(gen, GA) (operation)

♦ HAPPRIME ExpandGeneratingRowsOnRight(gens, GA) (operation)

Returns: List
Returns a list of G-generators for the vector space that corresponds to the of G-generator gen (or

generators gens). This space is formed by multiplying each generator by each element of G in turn,
using the group and action specified in GA (see ModuleGroupAndAction (3.4.5)). The returned list is
thus |G| times larger than the input.

For a list of generators gens [v1,v2, . . . ,vn], HAPPRIME ExpandGeneratingRows (6.1.4) returns
the list [g1v1,g2v1, . . . ,g1v2,g2v2, . . . ,g|G|vn] In other words, the form of the returned matrix is block-
wise, with the expansions of each row given in turn. This function is more efficient than repeated use of
HAPPRIME ExpandGeneratingRow (6.1.4) since it uses the efficient HAPPRIME GActMatrixColumns
(6.1.3) to perform the group action on the whole set of generating rows at a time.

The function HAPPRIME ExpandGeneratingRowsOnRight (6.1.4) is the same as above, but the
group action operates on the right instead.

6.1.5 HAPPRIME AddGeneratingRowToSemiEchelonBasisDestructive

♦ HAPPRIME AddGeneratingRowToSemiEchelonBasisDestructive(basis, gen, GA) (opera-

tion)

Returns: Record with elements vectors and basis
This function augments a vector space basis with another generator. It returns a record consisting

of two elements: vectors, a set of semi-echelon basis vectors for the vector space spanned by the
sum of the input basis and all G-multiples of the generating vector gen; and heads, a list of the
head elements, in the same format as returned by SemiEchelonMat (Reference: SemiEchelonMat).
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The generator gen is expanded according to the group and action specified in the GA record (see
ModuleGroupAndAction (3.4.5)).

If the input basis is not zero, it is also modified by this function, to be the new basis (i.e. the
same as the vectors element of the returned record).

6.1.6 HAPPRIME ReduceVectorDestructive

♦ HAPPRIME ReduceVectorDestructive(v, basis, heads) (operation)

Returns: Boolean
Reduces the vector v (in-place) using the semi-echelon set of vectors basis with heads heads

(as returned by SemiEchelonMat (Reference: SemiEchelonMat)). Returns true if the vector is
completely reduced to zero, or false otherwise.

6.1.7 HAPPRIME ReduceGeneratorsOfModuleByXX

♦ HAPPRIME ReduceGeneratorsOfModuleBySemiEchelon(gens, GA) (operation)

♦ HAPPRIME ReduceGeneratorsOfModuleBySemiEchelonDestructive(gens, GA) (operation)

♦ HAPPRIME ReduceGeneratorsOfModuleByLeavingOneOut(gens, GA) (operation)

♦ HAPPRIME ReduceGeneratorsOnRightByLeavingOneOut(gens, GA) (operation)

Returns: List of vectors
Returns a subset of the module generators gens over the group with action specified in the GA

record (see ModuleGroupAndAction (3.4.5)) that will still generate the module.
The BySemiEchelon functions gradually expand out the module generators into an F-basis, using

that F-basis to reduce the other generators, until the full vector space of the module is spanned. The
generators needed to span the space are returned, and should be a small set, although not minimal.
The Destructive version of this function will modify the input gens parameter. The non-destructive
version makes a copy first, so leaves the input arguments unchanged, at the expense of more memory.

The ByLeavingOneOut function is tries repeatedly leaving out generators from the list gens to
find a small subset that still generates the module. If the generators are from the field GF(2), this is
guaranteed to be a minimal set of generators. The OnRight version computes a minimal subset which
generates the module under group multiplication on the right.

6.1.8 HAPPRIME DisplayGeneratingRows

♦ HAPPRIME DisplayGeneratingRows(gens, GA) (operation)

Returns: nothing
Displays a set of G-generating rows a human-readable form. The elements of each generating

vector are displayed, with each block marked by a separator (since the group action on a module
vector will only permute elements within a block).

This function is used by Display for both FpGModuleGF and FpGModuleHomomorphismGF.
NOTE: This is currently only implemented for GF(2)

Example
gap> HAPPRIME_DisplayGeneratingRows(
> ModuleGenerators(M), HAPPRIME_ModuleGroupAndAction(M));
[...1..11|........|.......1|........|........]
[........|........|........|.1....11|........]
[........|........|........|........|..1.1.1.]
[........|.1.1..1.|........|........|........]



HAPprime 49

[........|........|......11|........|........]
[........|........|1......1|........|........]

6.1.9 HAPPRIME GeneratingRowsBlockStructure

♦ HAPPRIME GeneratingRowsBlockStructure(gens, GA) (operation)

Returns: Matrix
Returns a matrix detailing the block structure of a set of module generating rows. The group

action on a generator permutes the vector in blocks of length GA.actionBlockSize: any block that
contains non-zero elements will still contain non-zero elements after the group action; any block that
is all zero will remain all zero. This operation returns a matrix giving this block structure: it has a one
where the block is non-zero and zero where the block is all zero.

Example
gap> b := HAPPRIME_GeneratingRowsBlockStructure(
> ModuleGenerators(M), ModuleActionBlockSize(M));
[ [ 1, 0, 1, 1, 1 ], [ 1, 0, 1, 1, 1 ], [ 0, 1, 1, 1, 1 ], [ 0, 0, 1, 1, 1 ] ]

6.1.10 HAPPRIME DisplayGeneratingRowsBlocks

♦ HAPPRIME DisplayGeneratingRowsBlocks(gens, actionBlockSize) (operation)

Returns: nothing
Displays a set of G-generating rows a compact human-readable form. Each generating rows can be

divided into blocks of length actionBlockSize. The generating rows are displayed in a per-block
form: a * where the block is non-zero and . where the block is all zero.

This function is used by DisplayBlocks (3.4.10) (for FpGModuleGF) and DisplayBlocks (4.5.4)
(for FpGModuleHomomorphismGF).

Example
gap> HAPPRIME_DisplayGeneratingRowsBlocks(
> ModuleGenerators(M), HAPPRIME_ModuleGroupAndAction(M));
[*.*..]
[...*.]
[....*]
[.*...]
[..*..]
[..*..]

6.1.11 HAPPRIME IndependentGeneratingRows

♦ HAPPRIME IndependentGeneratingRows(blocks) (operation)

Returns: List of lists
Given a block structure as returned by HAPPRIME GeneratingRowsBlockStructure (6.1.9), this

decomposes a set of generating rows into sets of independent rows. These are returned as a list of row
indices, where each set of rows share no blocks with any other set.

Example
gap> DisplayBlocks(M);
Module over the group ring of Group( [ f1, f2, f3 ] )
in characteristic 2 with 6 generators in FGˆ5.

[**...]
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[.*...]
[.**..]
[.**..]
[...*.]
[....*]
Generators are in minimal echelon form.
gap> gens := ModuleGenerators(M);;
gap> G := ModuleGroup(M);;
gap> blocks := HAPPRIME_GeneratingRowsBlockStructure(gens, G);
[ [ 1, 1, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, 1, 1, 0, 0 ], [ 0, 1, 1, 0, 0 ],
[ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ] ]

gap> HAPPRIME_IndependentGeneratingRows(blocks);
[ [ 1, 2, 3, 4 ], [ 5 ], [ 6 ] ]

6.1.12 HAPPRIME GactFGvector

♦ HAPPRIME GactFGvector(g, v, MT) (operation)

Returns: Vector
Returns the vector that is the result of the action u = gv of the group element g on a module vector

v (according to the group multiplication table MT. This operation is the quickest current method for a
single vector. To perform the same action on a set of vectors, it is faster write the vectors as columns
of a matrix and use HAPPRIME GActMatrixColumns (6.1.3) instead.

6.1.13 HAPPRIME CoefficientsOfGeneratingRowsXX

♦ HAPPRIME CoefficientsOfGeneratingRows(gens, GA, v) (operation)

♦ HAPPRIME CoefficientsOfGeneratingRows(gens, GA, coll) (operation)

♦ HAPPRIME CoefficientsOfGeneratingRowsDestructive(gens, GA, v) (operation)

♦ HAPPRIME CoefficientsOfGeneratingRowsDestructive(gens, GA, coll) (operation)

♦ HAPPRIME CoefficientsOfGeneratingRowsGF(gens, GA, v) (operation)

♦ HAPPRIME CoefficientsOfGeneratingRowsGF(gens, GA, coll) (operation)

♦ HAPPRIME CoefficientsOfGeneratingRowsGFDestructive(gens, GA, v) (operation)

♦ HAPPRIME CoefficientsOfGeneratingRowsGFDestructive(gens, GA, coll) (operation)

♦ HAPPRIME CoefficientsOfGeneratingRowsGFDestructive2(gens, GA, v) (operation)

♦ HAPPRIME CoefficientsOfGeneratingRowsGFDestructive2(gens, GA, coll) (operation)

Returns: Vector, or list of vectors
For a single vector v , this function returns a vector x giving the G-coefficients from gens needed

to generate v , i.e. the solution to the equation x∗A = v, where A is the expansion of gens. If there is
no solution, fail is returned. If a list of vectors, coll, then a vector is returned that lists the solution
for each vector (any of which may be fail). The standard forms of this function use standard linear
algebra to solve for the coefficients. The Destructive version will corrupt both gens and v . The
GF versions use the block structure of the generating rows to expand only the blocks that are needed
to find the solution before using linear algebra. If the generators are in echelon form, this can save
memory, but is slower.

The GFDestructive2 functions also assume an echelon form for the generators, but use back-
substitution to find a set of coefficients. This can save a lot of memory but is again slower.
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6.1.14 HAPPRIME GenerateFromGeneratingRowsCoefficientsXX

♦ HAPPRIME GenerateFromGeneratingRowsCoefficients(gens, GA, c) (operation)

♦ HAPPRIME GenerateFromGeneratingRowsCoefficients(gens, GA, coll) (operation)

♦ HAPPRIME GenerateFromGeneratingRowsCoefficientsGF(gens, GA, c) (operation)

♦ HAPPRIME GenerateFromGeneratingRowsCoefficientsGF(gens, GA, coll) (operation)

Returns: Vector, or list of vectors
For a vector c, returns (as a vector), the module element generated by multiplying c by the ex-

pansion of the generators gens. For a list of coefficient vectors coll, this returns a list of generating
vectors.

The standard versions of this function use standard linear algebra. The GF versions only performs
the expansion of necessary generating rows, and only expands by one group element at a time, so will
only need at most twice the amount of memory as that to store gens, which is a large saving over
expanding the generators by every group element at the same time, as in a naive implementation. It
may also be faster.

6.1.15 HAPPRIME RemoveZeroBlocks

♦ HAPPRIME RemoveZeroBlocks(gens, GA) (operation)

Returns: Vector
Removes from a set of generating vectors gens (with ModuleGroupAndAction (3.4.5) GA) any

blocks that are zero in every generating vector. Removal is done in-place, i.e. the input argument
genswill be modified to remove the zero blocks. Zero blocks are unaffected by any row or expansion
operation, and can be removed to save time or memory in those operations. The function returns the
original block structure as a vector, and this can be used in the function HAPPRIME AddZeroBlocks
(6.1.16) to reinstate the zero blocks later, if required. See the documentation for that function for more
detail of the block structure vector.

6.1.16 HAPPRIME AddZeroBlocks

♦ HAPPRIME AddZeroBlocks(gens, blockStructure, GA) (operation)

Returns: List of vectors
Adds zero blocks to a set of generating vectors gens to make it have the block structure given

in blockStructure (for a given ModuleGroupAndAction (3.4.5) GA). The generators gens are
modified in place, and also returned.

The blockStructure parameter is a vector of which is the length of the required output vector
and has zeros where zero blocks should be, and is non-zero elsewhere. Typically, an earlier call to
HAPPRIME RemoveZeroBlocks (6.1.15) will have been used to remove the zero blocks, and this func-
tion and such a blockStructure vector is returned by this function. HAPPRIME AddZeroBlocks
(6.1.16) can be used to reinstate these zero blocks.

6.2 FG-modules

FG-modules in HAPprime use the datatype FpGModuleGF (Chapter 3). Internally, this uses many of
the functions listed in Section 6.1, and further internal functions are listed below.
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6.2.1 HAPPRIME DirectSumForm

♦ HAPPRIME DirectSumForm(current, new) (operation)

Returns: String
Returns a string containing the form of the generator matrix if the direct sum is formed between

a FpGModuleGF with the form current and a FpGModuleGF with the form new . The direct sum is
formed by placing the two module generating matrices in diagonal form. Given the form of the two
generating matrices, this allows the form of the direct sum to be stated. See ModuleGeneratorsForm
(3.5.5) for information about form strings.

6.2.2 HAPPRIME PrintModuleDescription

♦ HAPPRIME PrintModuleDescription(M, func) (operation)

Returns: nothing
Used by PrintObj (Reference: PrintObj), ViewObj (Reference: ViewObj), Display

(Reference: Display) and DisplayBlocks (3.4.10), this helper function prints a description of
the module M . The parameter func can be one of the strings "print", "view", "display" or
"displayblocks", corresponding to the print different functions that might be called.

6.2.3 HAPPRIME ModuleGeneratorCoefficients

♦ HAPPRIME ModuleGeneratorCoefficients(M, elm) (operation)

♦ HAPPRIME ModuleGeneratorCoefficientsDestructive(M, elm) (operation)

♦ HAPPRIME ModuleGeneratorCoefficients(M, coll) (operation)

♦ HAPPRIME ModuleGeneratorCoefficientsDestructive(M, coll) (operation)

Returns: Vector
Returns the coefficients needed to make the module element elm as a linear and G-combination of

the module generators of the FpGModuleGF M . The coefficients are returned in standard vector form,
or if there is no solution then fail is returned. If a list of elements is given, then a list of coefficients
(or fails) is returned. The Destructive form of this function might change the elements of of M or
elm. The non-Destructive version makes copies to ensure that they are not changed.

See also HAPPRIME ModuleElementFromGeneratorCoefficients (6.2.4).

6.2.4 HAPPRIME ModuleElementFromGeneratorCoefficients

♦ HAPPRIME ModuleElementFromGeneratorCoefficients(M, c) (operation)

♦ HAPPRIME ModuleElementFromGeneratorCoefficients(M, coll) (operation)

Returns: Vector
Returns an element from the module M , constructed as a linear and G-sum of the module genera-

tors as specified in c. If a list of coefficient vectors is given, a list of corresponding module elements
is returned.

See also HAPPRIME ModuleGeneratorCoefficients (6.2.3)

6.2.5 HAPPRIME MinimalGeneratorsVectorSpaceGeneratingRowsDestructive

♦ HAPPRIME MinimalGeneratorsVectorSpaceGeneratingRowsDestructive(vgens, GA)
(operation)

♦ HAPPRIME MinimalGeneratorsVectorSpaceGeneratingRowsOnRightDestructive(vgens,
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GA) (operation)

Returns: FpGModuleGF
Returns a module with minimal generators that is equal to the FG-module with vector space basis

vgens and ModuleGroupAndAction (3.4.5) as specified in GA. The solution is computed by the
module radical method, which is fast at the expense of memory. This function will corrupt the matrix
gens.

This is a helper function for MinimalGeneratorsModuleRadical (3.5.9) that is also used
by ExtendResolutionPrimePowerGroupRadical (HAPprime: ExtendResolutionPrimePower-
GroupRadical) (which knows that its module is already in vector-space form).

6.2.6 HAPPRIME IsGroupAndAction

♦ HAPPRIME IsGroupAndAction(obj) (operation)

Returns: Boolean
Returns true if obj appears to be a groupAndAction record (see ModuleGroupAndAction

(3.4.5)), or false otherwise.

6.3 Resolutions

For details of the main resolution functions in HAPprime, see Chapter 2 of this datatypes reference
manual, and (HAPprime: Resolutions) in the HAPprime user guide. This section describes the
internal helper functions used by the higher-level functions.

6.3.1 HAPPRIME WordToVector

♦ HAPPRIME WordToVector(w, dim, orderG) (method)

Returns: HAP word (list of lists)
Returns the boundary map vector that corresponds to the HAP word vector w with module ambient

dimension dim and group order orderG (assumed to be the actionBlockSize). A HAP word
vector has the following format: [ [block, elm], [block, elm], ... ] where block is a
block number and elm is a group element index (see example below).

See also HAPPRIME VectorToWord (6.3.2)
Example

gap> G := CyclicGroup(4);;
gap> v := HAPPRIME_WordToVector([ [1,2],[2,3] ], 2, Order(G));
<a GF2 vector of length 8>
gap> HAPPRIME_DisplayGeneratingRows([v], CanonicalGroupAndAction(G));
[.1..|..1.]
gap> HAPPRIME_VectorToWord(v, Order(G));
[ [ 1, 2 ], [ 2, 3 ] ]

6.3.2 HAPPRIME VectorToWord

♦ HAPPRIME VectorToWord(vec, orderG) (function)

Returns: Vector
The HAP word format vector that corresponds to the boundary vector vec with

actionBlockSize assumed to be orderG.
See HAPPRIME WordToVector (6.3.1) for a few more details and an example.
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6.3.3 HAPPRIME BoundaryMatrices

♦ HAPPRIME BoundaryMatrices(R) (attribute)

Returns: List of matrices
If R is a resolution which stores its boundaries as a list of matrices (e.g. one created by HAPprime,

this list is returned. Otherwise, fail is returned. Note that the first matrix in this list corresponds to
the zeroth degree: for resolutions of modules, this is the generators of the module; for resolutions of
groups, this is the empty matrix. The second matrix corresponds to the first degree, and so on.

6.3.4 HAPPRIME AddNextResolutionBoundaryMapMatNC

♦ HAPPRIME AddNextResolutionBoundaryMapMatNC(R, BndMat) (operation)

Returns: HapResolution
Returns the resolution R extended by one term, where that term is given by the boundary map

matrix BndMat. If BndMat is not already in compressed matrix form, it will be converted into this
form, and if the boundaries in R are not already in matrix form, they are all converted into this form.

6.3.5 HAPPRIME CreateResolutionWithBoundaryMapMatsNC

♦ HAPPRIME CreateResolutionWithBoundaryMapMatsNC(G, BndMats) (operation)

Returns: HapResolution
Returns a HAP resolution object for group G where the module homomorphisms are given by the

boundary matrices in the list BndMats. This list is indexed with the boundary matrix for degree zero
as the first element. If the resolution is the resolution of a module, the module’s minimal generators
are this first boundary matrix, otherwise (for the resolution of a group), this should be set to be the
empty matrix [].

6.4 Test functions

Internal helper functions for testing HAPprime.

6.4.1 HAPPRIME SingularIsAvailable

♦ HAPPRIME SingularIsAvailable() (function)

Returns: Boolean
The Singular package can be succesfully loaded whether the singular executable is present or

not, so this function attempts to check for the presence of this executable by searching on the system
path and checking for global variables set by the Singular.

Whether this function returns true or false will not affect the rest of this package: it only affects
which tests are run by the happrime.txt and testall.g test routines.

6.4.2 HAPPRIME Random2Group

♦ HAPPRIME Random2Group([orderG]) (operation)

♦ HAPPRIME Random2GroupAndAction([orderG]) (operation)

Returns: Group or groupAndAction record
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Returns a random 2-group, or a groupAndAction record (see ModuleGroupAndAction (3.4.5))
with the canonical action. The order may be specified as an argument, or if not then a group is chosen
randomly (from a uniform distribution) over all of the possible groups with order from 2 to 128.

Example
gap> HAPPRIME_Random2Group();
<pc group of size 8 with 3 generators>
gap> HAPPRIME_Random2Group();
<pc group of size 32 with 5 generators>

6.4.3 HAPPRIME TestResolutionPrimePowerGroup

♦ HAPPRIME TestResolutionPrimePowerGroup([ntests]) (operation)

Returns: Boolean
Returns true if ResolutionPrimePowerGroupGF (HAPprime: ResolutionPrimePower-

GroupGF (for group)) and ResolutionPrimePowerGroupRadical (HAPprime: Resolution-
PrimePowerGroupRadical (for group)) appear to be working correctly, or false otherwise.
This repeatedly creates resolutions of length 6 for random 2-groups (up to order 128) using
both of the HAPprime resolution algorithms, and compares them both with the original HAP
ResolutionPrimePowerGroup (HAP: ResolutionPrimePowerGroup) and checks that they are
equal. The optional argument ntests specifies how many resolutions to try: the default is 25.
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