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Chapter 1

Introduction

1.1 Introduction to the HAPprime package

HAPprime is a package for the GAP computer algebra system (http://www.gap-system.org/),
and which extends the HAP ‘Homological Algebra Progamming’ package written by Graham Ellis
(http://hamilton.nuigalway.ie/Hap/www/). It provides algorithms and data structures for cal-
culating resolutions of small prime-power groups. The HAPprime functions use significantly less
memory than the equivalent function in HAP, allowing resolutions (and cohomology ring presenta-
tions) of larger groups to be calculated (see Section 2.2).

Earlier versions of HAPprime also included functions to compute polynomial ring presentations
of cohomology rings, and to ensure that these rings are complete and correct. These functions
have now been moved into the HAP package and are documented as part of that package (see for
example Mod2CohomologyRingPresentation (HAP: Mod2CohomologyRingPresentation (HAP-
prime)) and PoincareSeriesLHS (HAP: PoincareSeriesLHS (HAPprime))).

1.2 Required software

The HAPprime package requires GAP version 4.4 or greater and HAP version 1.9.3 or greater.

1.3 Installing HAPprime

To install the HAPprime Package, unpack the archive file into your GAP packages directory (either
usually the pkg directory of your GAP 4 installation if you have access to it, or some local pkg direc-
tory that GAP can find). The HAPprime files will all be installed in a subdirectory called happrime.

1.4 Loading and testing HAPprime

The HAPprime package is not loaded by default when GAP is started. To load the package, type the
following at the GAP prompt:

Example

gap> LoadPackage ( "HAPprime");
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If HAPprime isn’t already in memory, it is loaded and the author information is displayed. If you are
a frequent user of HAPprime, you might consider putting this line in your .gaprc file, or using the
PackagesToLoad option in your gap.ini file.

The correct installation of HAPprime can be tested by using the test routine tst/testall.g:
Example
gap> ReadPackage ("HAPprime", "tst/testall.g");
+ HAPprime version 0.5.1

general tests
+ GAP4stones: 371057
+ HAPprime version 0.5.1
userguide examples
+ GAP4stones: 387662
+ HAPprime version 0.5.1
datatypes reference manual examples
+ GAP4stones: 382653
true

The number of GAP4stones will vary depending on your machine, but any additional lines of mes-
sages indicate problems with your installation.

The test routine calls a set of test files (Reference: Test Files) which can be found in the tst
directory of the HAPprime installation. All of the routines listed in this user guide are tested, as are
many of those in the datatype reference manual.

1.5 Documentation

The documentation for HAPprime is in two parts. This document is the user guide, which covers
the main functions provided by HAPprime and examples of their use. There is also a more technical
HAPprime datatypes reference manual which gives details of the new GAP datatypes defined and used
internally by HAPprime, as well as outlining the algorithms used by the package.

1.5.1 MakeHAPprimeDoc

{ MakeHAPprimeDoc ( [manual—-name]) (function)

Returns: nothing

The two manuals supplied with HAPprime - this user guide and the datatypes reference manual -
are written using the GAPDoc package and are available in PDF, HTML and text format. It should
not be necessary to rebuild these files, but should you wish to do so then this can be done using the
function MakeHAPprimeDoc.

The optional argument manual—-name is a string specifying which manuals to build. It may be
one of the following

e "all" builds both manuals. This is the default
e "userguide" builds just the user guide
e "datatypes" builds just the datatypes reference manual

e "internal" builds both manuals, including the otherwise undocumented internal functions
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e "testexamples" builds neither manual, but tests all of the examples using
TestManualExamples (GAPDoc: TestManualExamples)

As well as building the manuals, this function at the same time builds GAP test files (Reference:
Test Files) which means that all of the testable examples in the manuals are added to the HAPprime
test routines described in Section 1.4.

1.6 Displaying progress and calculation information

By default, the functions in HAPprime display no output (except for returning the result). The
InfoHAPprime info class can be used to enable the printing of progress and calculation informa-
tion during processing. Since some computations with HAPprime can take several hours, setting this
to a higher level can be particularly useful for monitoring the progress of computations.

1.6.1 InfoHAPprime

Q InfoHAPprime (info class)

The InfoHAPprime info class is wused throughout the HAPprime package. Use
SetInfolevel (InfoHAPprime, level) to change the amount of information displayed about the
progress of the computation (see SetInfoLevel (Reference: SetInfoLevel) in the GAP reference
manual). The different distinct levels are:

e ( print nothing (this is the default)

e 1 print some information, mainly progress information during computations that may take some
time

e 2 print more detailed information, incluing details of internal calculations
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Examples

2.1 Computing the mod p group cohomology

Let G be a group and FF be a field, and let FG be the group ring of G over . A free FG-resolution of
the ground ring is an exact sequence of module homomorphisms

oMy M, M, | —...>M —-FG—>TF

Where each M, is a free FG-module and the image of d,+ : M,+1 — M, equals the kernel of d,, :
M, — M,_; for all n > 0. The maps d, are called boundary homomorphisms. In HAPprime we
consider the case where G is a p-group and I is the prime field GF (p), and this is assumed from now
on.

If we now define the Abelian group D,, to be Hom(M,,,[F), the set of all homomorphisms M,, — F,
we can obtain the dual of this sequence, which will be a cochain complex of Abelian group homo-
morphisms

it Dp1 <Dy Dy 1 ... D —F<«TF

Each group D,, will be isomorphic to FIMil where |M,| is the rank of the module M,. Unlike the
resolution, this sequence will generally not be exact, but one can define the mod-p cohomology group
of G at degree n to be

ker(Dy, — Dyt1)

im(Dy—1 — Dy)

for all n > 0. As with the D,,, the mod-p cohomology groups will also be isomorphic to vector spaces
over IF. In the case where the resolution R is minimal (where each module M,, has the minimal number
of generators), the dimensions of the (co)homology groups H" (G, F) are identical to the dimensions of
the resolution modules M,,. The group cohomology (and the similar group homology) is an invariant
of G, and does not depend on a particular free FG-resolution.

In the general case, there are thus two stages to computing the group cohomology of G up to the
nth cohomology group:

H"(G,F) =

1. Compute R, a free FG-resolution for FG, with at least n+ 1 terms.
2. Construct the cochain complex C from R and compute the n homology groups of C

For example, to calculate the 9th mod-p cohomology group of the 134th order 64 in the GAP small
groups library (which is the Sylow 2-subgroup of the Mathieu group M1,), we can use the HAPprime
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function ResolutionPrimePowerGroupRadical (3.1.1) to compute 10 terms of a free FG-resolution
for G and then use HAP functions to find the rank by of the cohomology group, which will be iso-
morphic to . Alternatively, since ResolutionPrimePowerGroupRadical (3.1.1) always returns a

minimal resolution, the cohomology group dirréensioils can be read directly from the resolution.
xample

gap> G := SmallGroup (64, 134);;

gap> # First construct a FG-resolution for the group G

gap> R := ResolutionPrimePowerGroupRadical (G, 10);

Resolution of length 10 in characteristic 2 for <pc group of size 64 with
6 generators> .

No contracting homotopy available.

A partial contracting homotopy is available.

gap> # Convert this into a cochain complex (over the prime field with p=2)
gap> C := HomToIntegersModP (R, 2);
Cochain complex of length 10 in characteristic 2 .

gap> # And get the rank of the 9th cohomology group

gap> b9 := Cohomology(C, 9);

55

gap>

gap> # Since R is a free resolution, the ranks of the cohomology groups
gap> # are the same as the module ranks in R

gap> ResolutionModuleRanks (R);

[ 3, 6, 10, 15, 21, 28, 36, 45, 55, 66 ]

2.2 Comparing the memory usage and speed of HAPprime and HAP’s
ResolutionPrimePowerGroup functions

For small p-groups, the group ring FG can be considered as a vector space of rank |G| with the el-
ements of G as its basis elements. Each module M, in a FG-resolution is also a vector space (of
dimension |M,||G|) and the boundary maps d, can be represented as vector space homomorphisms.
As a result, standard linear algebra techniques can be used to compute a minimal resolution by con-
structing a sequence of module homomorphisms where the kernel of one map is the image of the
next, and where the modules have minimal generating sets. See Chapter (HAPprime Datatypes:
Resolutions) in the datatypes manual for further details.

As the groups get larger, this approach becomes less feasible due to the amount of time
and memory needed to store and compute the null space of large matrices. The HAP function
ResolutionPrimePowerGroup (HAP: ResolutionPrimePowerGroup) and the HAPprime functions
ResolutionPrimePowerGroupRadical (3.1.1) and ResolutionPrimePowerGroupGF (3.1.1) all use
this linear algebra approach, but the HAPprime functions are optimised to save memory, allowing the
computation of resolutions which are longer, or are of larger groups, than are possible using HAP
alone.

2.2.1 HAPprime takes less memory to store resolutions

Consider computing a resolution of a group of an arbitrary group of order 128, G =
SmallGroup (128, 844) using HAP. Computation is performed on a dual-core Intel Core2Duo run-
ning at 2.66MHz, and the memory available to GAP is the standard initial allocation of 256Mb.
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Example
gap> G := SmallGroup (128, 844);;

gap> R := ResolutionPrimePowerGroup (G, 9);
Resolution of length 9 in characteristic 2 for <pc group of size 128 with
7T generators>

gap> time;

27685

gap> # Can we construct a resolution of length ten?

gap> R := ResolutionPrimePowerGroup (G, 10);

exceeded the permitted memory (‘-o’ command line option) at
res := SemiEchelonMatDestructive( List( mat, ShallowCopy ) );
called from

SemiEchelonMat ( NullspaceMat ( BndMat ) ) called from

ZGbasisOfKernel ( 1 - 1 ) called from

<function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop ...

you can ’'quit;’ to quit to outer loop, or

you can 'return;’ to continue

The HAPprime function ResolutionPrimePowerGroupRadical (3.1.1) uses an almost identical al-

gorithm, but stores its boundary maps more efficiently. As a result, with the same memory allowance:
Example

gap> G := SmallGroup (128, 844);;

gap> R := ResolutionPrimePowerGroupRadical (G, 9);

Resolution of length 9 in characteristic 2 for <pc group of size 128 with
7 generators>

No contracting homotopy available.

A partial contracting homotopy is available.

gap> time;

25321

gap> # Can we construct a resolution of length ten?

gap> R := ExtendResolutionPrimePowerGroupRadical (R);;

gap> # Yes! How about eleven?

gap> R := ExtendResolutionPrimePowerGroupRadical (R);

Resolution of length 11 in characteristic 2 for <pc group of size 128 with
7T generators>

No contracting homotopy available.

A partial contracting homotopy is available.

gap> ResolutionModuleRanks (R);
[ 3, 6, 11, 19, 30, 44, 62, 85, 113, 146, 185 ]

gap>
gap> # But it will run out of memory if we try to go to twelve terms
gap> R := ExtendResolutionPrimePowerGroupRadical (R);

exceeded the permitted memory (‘-o’ command line option) at

The HAPprime version can compute two further terms of the resolution, which given the sizes of
the additional modules represents a considerable improvement. Just representing the homomor-
phism djo : (FG)'6 — (FG)''"® as vectors requires nearly as much memory again as represent-
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ing the first nine homomorphisms. To compute and store the same resolution of length 11 us-
ing ResolutionPrimePowerGroup (HAP: ResolutionPrimePowerGroup) would need a little over
three times the memory used here by HAPprime. The time taken by both versions is very similar.

In the example above, note also the wuse of the HAPprime function
ExtendResolutionPrimePowerGroupRadical (3.1.2), which makes it much easier to add
terms to an existing resolution. In standard HAP, if one decides that a resolution is too short and that
more terms are required, then the entire resolution must be computed again from scratch.

2.2.2 HAPprime takes less memory to compute resolutions

The function ResolutionPrimePowerGroupGE (3.1.1) uses a new algorithm to compute the ker-
nel of FG-module homomorphisms when FG-modules are represented using a set of G-generating
vectors (see (HAPprime Datatypes: FG-module homomorphisms) in the datatypes reference man-
ual). This provides a further memory saving over ResolutionPrimePowerGroupRadical (3.1.1),
although at the cost of a much slower computation time:

Example

gap> G := SmallGroup (128, 844);;

gap> R := ResolutionPrimePowerGroupGF (G, 9);

Resolution of length 9 in characteristic 2 for <pc group of size 128 with
7T generators> .

No contracting homotopy available.

A partial contracting homotopy is available.

gap> time;

]
B

422742

gap> R := ExtendResolutionPrimePowerGroupGF (R);;

gap> R := ExtendResolutionPrimePowerGroupGF (R);;

gap> R := ExtendResolutionPrimePowerGroupGF (R);;

gap> R := ExtendResolutionPrimePowerGroupGF (R);;

gap> R := ExtendResolutionPrimePowerGroquF(R),,
(

gap> ExtendResolutionPrimePowerGroupGF (R) ;

Resolutlon of length 15 in characteristic 2 for <pc group of size 128 with
T generators> .

No contracting homotopy available.

A partial contracting homotopy is available.

gap> ResolutionModuleRanks (R);
[ 3, 6, 11, 19, 30, 44, 62, 85, 113, 146, 185, 231, 284, 344, 412 ]
gap> # But it will run out of (the inital 256Mb) of memory at sixteen terms

Using ResolutionPrimePowerGroupGF (3.1.1) we can get a further four terms of the res-
olution. =~ For this resolution, this represents a memory saving of a factor of five over
ResolutionPrimePowerGroupRadical (3.1.1) and fifteen over ResolutionPrimePowerGroup
(HAP: ResolutionPrimePowerGroup), although it does take fifteen times as long as either of those
just to compute the first nine terms, and scales less well with size.

2.2.3 Automatic selection of the best method

The two functions ResolutionPrimePowerGroupRadical 3.1.1) and
ResolutionPrimePowerGroupGF (3.1.1) offer a trade-off between time and memory. The
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function ResolutionPrimePowerGroupAutoMem (3.1.1) automates the decision of which version to
use, switching from the Radical to the GF version when it estimates that it is about to run out of
available memory for the faster version. In this example, we have also increase the InfoHAPprime
(1.6.1) info level to display progress information. At level two, the rank of each module in the
resolution is displayed as it is calculated, giving an indication of progress. With this setting, the user
is also notified when the AutoMem function switches, and the GF function displays a rolling estimate

of its completion time (which is not shown since that output is overwritten when completed)
Example

gap> G := SmallGroup (128, 844);;

gap> SetInfolevel (InfoHAPprime, 2);

gap> R := ResolutionPrimePowerGroupAutoMem(G, 15);
#I Dimension 2: rank 6

#I Dimension 3: rank 11
#I Dimension 4: rank 19
#I Dimension 5: rank 30
#I Dimension 6: rank 44
#I Dimension 7: rank 62
#I Dimension 8: rank 85

#I Dimension 9: rank 113
#I Finding kernel of homomorphism by splitting:

#I - Finding kernel of U

#I - Finding kernel of V

#I - Finding intersection of U and V
#I - Finding intersection preimages

#I Dimension 10: rank 146
#I Finding kernel of homomorphism by splitting:

#I - Finding kernel of U

#I - Finding kernel of V

#I - Finding intersection of U and V
#1 - Finding intersection preimages

#I Dimension 11: rank 185
#I Finding kernel of homomorphism by splitting:

#I - Finding kernel of U

#I - Finding kernel of V

#I - Finding intersection of U and V
#I - Finding intersection preimages

#I Dimension 12: rank 231
#I Finding kernel of homomorphism by splitting:

#I - Finding kernel of U

#I - Finding kernel of V

#I - Finding intersection of U and V
#I - Finding intersection preimages

#I Dimension 13: rank 284
#I Finding kernel of homomorphism by splitting:

#I - Finding kernel of U

#I - Finding kernel of V

#I - Finding intersection of U and V
#I - Finding intersection preimages

#I Dimension 14: rank 344
#I Finding kernel of homomorphism by splitting:
#I - Finding kernel of U
#I - Finding kernel of V
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#I - Finding intersection of U and V

#I - Finding intersection preimages

#I Dimension 15: rank 412

Resolution of length 15 in characteristic 2 for <pc group of size 128 with
7T generators>

No contracting homotopy available.

A partial contracting homotopy is available.

gap> StringTime (time);
" 5:45:53.613"

12




Chapter 3

Functions for Homological Algebra

3.1 Resolutions

3.1.1 ResolutionPrimePowerGroup

Q ResolutionPrimePowerGroupRadical (G, n) (operation)
{Q ResolutionPrimePowerGroupGF (G, n) (operation)
Q ResolutionPrimePowerGroupAutoMem (G, n) (operation)
Q ResolutionPrimePowerGroupGF2 (G, n) (operation)
Q ResolutionPrimePowerGroupRadical (M, n) (operation)
Q ResolutionPrimePowerGroupGF (M, n) (operation)
Q ResolutionPrimePowerGroupAutoMem (M, n) (operation)
Q ResolutionPrimePowerGroupGF2 (M, n) (operation)

Returns: HAPResolution

Returns n terms of a minimal free FG-resolution for either the ground ring of a prime power
group G or of a module M. For the module version, M must be passed as an FpGModuleGF object - see
(HAPprime Datatypes: FG-modules) in the HAPprime datatypes reference manual.

Three versions of this function are provided:

ResolutionPrimePowerGroupRadical
uses the same resolution-building method as the HAP function ResolutionPrimePowerGroup
(HAP: ResolutionPrimePowerGroup), but stores the resolution in a different format that takes
only about half the memory of the HAP version.

ResolutionPrimePowerGroupGF
calculates the resolution using HAPprime’s G-generator form of modules, which reduces mem-
ory use by around a factor of two over ResolutionPrimePowerGroupRadical, but is slower
by an order of magnitude.

ResolutionPrimePowerGroupAutoMem
automatically switches between the two previous versions based on the available memory. It
uses the Radical version until it gets close to the limit of the available memory, and then
switches to the GF version.

ResolutionPrimePowerGroupGF2
calculates the resolution by [FG-matrix partitioning.  The amount of partitioning is
governed by the (Reference: Options Stack) option MaxFGExpansionSize. The

13
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default value means that until the boundary map takes about 128Mb, the method
is equivalent to ResolutionPrimePowerGroupRadical, and then it tends towards
ResolutionPrimePowerGroupGF in terms of time, but saves less memory.

See the HAPprime datatypes reference manual for details of the different algorithms, in particular the
chapters on the G-generator form of FG-modules (HAPprime Datatypes: FG-modules) and FG-
module homomorphisms (HAPprime Datatypes: FG-module homomorphisms) and on resolutions
(HAPprime Datatypes: Resolutions).

3.1.2 ExtendResolutionPrimePowerGroup

Q) ExtendResolutionPrimePowerGroupRadical (R) (operation)
Q ExtendResolutionPrimePowerGroupGF (R) (operation)
Q ExtendResolutionPrimePowerGroupAutoMem (R) (operation)
Q ExtendResolutionPrimePowerGroupGF2 (R) (operation)

Returns: HAPResolution

Returns the resolution R extended by one term. The three variants offer a choice between memory
and speed, and correspond to the different versions of ResolutionPrimePowerGroup in HAPprime.
See the documentation (3.1.1) for those functions for a description of the different variants.
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